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RESUMEN

La modelacion y prediccion del clima son importantes para la gestion de recursos hidraulicos, especialmente
en regiones aridas y semiaridas que con frecuencia sufren escasez de agua. La cuenca de Maharlu-Bakhtegan
es una region arida y semiarida de 31000 km? localizada al suroeste de Iran, de modo que la precipitacion y
escasez de agua en esta zona son muy problematicas. Este estudio presenta una aproximacion a la modela-
cion del indice de sequia con base en indices climaticos de larga duracion y el uso del sistema adaptativo de
inferencia neurodifusa (ANFIS, por sus siglas en inglés), el arbol de decision M5P y el modelo perceptron
multicapa (MLP, por sus siglas en inglés). Primero se determin6 la mayoria de las sefiales climaticas a partir
de 25 seiiales climaticas utilizando analisis factorial, y posteriormente se predijo un indice estandarizado de
precipitacion mediante las técnicas ANFIS, MLP y M5P con anticipacion de uno a 12 meses. La evaluacion
de la aptitud del modelo mediante parametros de error y diagramas de Taylor demostr6é que el desempefio
del MLP es mejor que el de los otros dos modelos. Los resultados también mostraron que la exactitud de la
prediccion aumentd de manera considerable cuando se utilizaron indices climaticos del mes previo (£ — 1)
(RMSE = 0.802, ME =-0.002 y PBIAS =-0.47).

ABSTRACT

Climate modeling and prediction is important in water resources management, especially in arid and semi-arid
regions that frequently suffer further from water shortages. The Maharlu-Bakhtegan basin, with an area of
31000 km?® is a semi-arid and arid region located in southwestern Iran. Therefore, precipitation and water
shortage in this area have many problems. This study presents a drought index modeling approach based on
large-scale climate indices by using the adaptive neuro-fuzzy inference system (ANFIS), the M5P model
tree and the multilayer perceptron (MLP). First, most of the climate signals were determined from 25 climate
signals using factor analysis, and subsequently, the standardized precipitation index (SPI) was predicted one to
12 months in advance with ANFIS, the M5P model tree and MLP. The evaluation of the models performance
by error parameters and Taylor diagrams demonstrated that performance of the MLP is better than the other
models. The results also revealed that the accuracy of prediction increased considerably by using climate
indices of the previous month (¢ — 1) (RMSE = 0.802, ME =—-0.002 and PBIAS =-0.47).

Keywords: Standardized precipitation index (SPI), climate signals, multi-layer perceptron (MLP), adaptive
neuro-fuzzy inference system (ANFIS), M5P model tree, Taylor diagrams.
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1. Introduction

Drought is a climate feature that occurs occasionally.
This phenomenon, which affects more people than
any other hazard, is considered by many to be the
most complex but least understood of all the natural
vulnerabilities (Mishra and Desai, 2005). In Iran, arid
climate extends to an area of 573 884 km? (35.54% of
the territory). The Maharlu-Bakhtegan basin is located
in this area; therefore, precipitation and water shortage
in this region are very problematic. Meteorological
drought occurs when the precipitation average is
less than the precipitation average during the long-
term period. In Iran, we are confronting challenges
in many areas that have arid and semi-arid climates
and suffer drought events, so it is necessary to pay
more attention to precipitation. Pre-knowledge of the
possible amount of precipitation is important in plan-
ning water recourses, management of agriculture and
droughts, etc. Previous studies show that large-scale
climate modes (e.g., North Atlantic Oscillation [NAO],
South Oscillation Index [SOI]) have an influence on
climate and precipitation in different parts of the world
(Nazemosadat and Cordey, 2000; Karabork et al.,
2005; Gaughan and Waylen, 2012; Berg et al., 2013;
Choubin et al., 2014b).

In this study, we used large-scale climate indi-
ces for predicting the standard precipitation index
(SPI). Among the several proposed drought moni-
toring indices, SPI has widespread application for
describing and comparing droughts among different
time periods and regions with different climatic
conditions (Cancelliere et al., 2007). SPI prediction
is a critical issue that has attracted much attention in
recent decades all over the world in order to carry out
hydrological modeling in arid and semi-arid regions
(Rezaeian-Zadeh et al., 2012). Today, more non-lin-
ear models are applied to prediction. In previous
studies, Dahamsheh and Aksoy (2009), Azadi and
Sepaskhah (2012), and Rezaeian-Zadeh et al. (2012)
used artificial neural networks (ANNS5), and El-Shafie
et al. (2011), Sanikhani and Kisi (2012), Jeong et
al. (2012), and Choubin et al. (2014a) successfully
applied the adaptive neuro-fuzzy inference system
(ANFIS) to predict precipitation. In eastern Australia,
Deo and Sahin (2015) investigated the application of
the ANN model for the prediction of monthly SPIs
using hydrometeorological parameters and climate
indices. The results showed that the ANN model is a
useful data-driven tool for forecasting monthly SPIs.

In the Awash River Basin (Ethiopia), Belayneh et al.
(2014) forecasted the long term SPI drought using
wavelet neural networks. The forecasted results
indicated that the coupled wavelet neural network
(WA-ANN) models were better than all the other
models in this study for forecasting SPI 12 and SPI
24 values. Ruigar and Golian (2016) predicted the
precipitation in the Golestan dam watershed using
climate indices: their results indicated that the MLP
model is capable of accurately predicting monthly
maximum precipitation.

In this study we compared the performances of
three modeling techniques for predicting drought in a
43-yrperiod (1967-2009) in the Maharlu-Bakhtegan
basin of Iran. We used the M5P model tree in addition
to ANFIS and the multilayer perceptron (MLP) net-
work to predict the SPI using large-scale climate in-
dices as input data, over lead times of 1 to 12 months.

2. Methodology

2.1 Study area

The Maharlu-Bakhtegan basin spreads over
31000 km®. This area located in southwestern Iran
(29°00"to 31°14'N, 51°42'to 54°31' W), with annual
precipitation of 270 mm, is one of the most important
agricultural centers of Iran (Fig. 1). In this paper,
precipitation data were collected from the Iranian
Water Resource Management Company (TAMAB)
for four meteorological stations: Shiraz synoptic sta-
tion, Dashtbal, Ali Abad Khatr and Dehkade Shahid.
First, station data were analyzed and missing data
were reconstructed by using the correlation method;
then homogeneity and independence of data were
evaluated using the run-test method. Homogeneity
and dependence were accepted at a high level. We
used Thiessen polygons between stations to calculate
the average of watershed precipitation.

2.2 Standard precipitation index

The SPI was formulated by McKee et al. (1993) in
the Colorado Climate Center. It is a relatively new
drought index based only on precipitation, which is
very important to farmers and responds fairly imme-
diately to rainfall or dryness. This index is the number
of standard precipitation deviations that the observed
value would deviate from the long-term climatologi-
cal average. Either a gamma distribution or a Pearson
type III distribution is used for its transformation
into a normal distribution (Guttman, 1999). It can be
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Fig. 1. Study area.

calculated for any time scale; yearly, seasonally,
monthly or for various months. In this study, a month-
ly SPI was obtained based on the average rainfall over
the basin for a 43-yr period (1967-2009).

2.3 Large-scale climate indices

Climate signals are oceanic and atmospheric patterns
that affect the Earth’s climate in different regions.
In this study, the 25 indices were obtained from the
National Oceanic and Atmospheric Administration

T T
53°0'0"E 54°0'0"E

(NOAA) site (http://www.esrl.noaa.gov/psd/data/
climateindices/list/). Then, factor analysis was used
to choose the most effective climate index by reduc-
ing the complexity of input variables when there are
large volumes of information, thus allowing a better
interpretation of variables.

2.4 MLP network
ANNs are simplified versions of a human brain and con-
sistofinput, hidden and output layers (Gunaydin, 2009).


http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.esrl.noaa.gov/psd/data/climateindices/list/
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MLP is the most common neural network model
(Zurada, 1992; Hagan et al., 1996).

In this paper, we used the Levenberg-Marquardt
(LM) training algorithm to obtain the weight of the
MLP network. LM can be thought as a combination
of steepest descent and the Newton method. The MLP
network consists of an input layer of source neurons,
at least one middle or hidden layer of computation-
al neurons, and an output layer of computational
neurons. The output of an artificial neuron can be
expressed as follows:

n
Output=2xiwi=x1w1 tx,w, +
i=1

(M

X WhootX W
n n

373

where 7 is the total number of inputs, x,,x,,...,x, are
the inputs, w;,w»,...,w, are corresponding weights
for the inputs.

In this study, the optimum number of hidden
neurons and transfer functions was obtained by ex-
periments or by trial and error. Logsig and Purelin
transfer functions were used in the hidden and output
layers, respectively.

2.5 M5P model tree

Model trees were developed by Quinlan (1992). M5P
is a tree-based model used for prediction. Instead
of discrete class labels, it uses linear functions at
the leaves. M5P is based on the assumption that the
functional dependency is not constant in the whole
domain, but can be considered on smaller sub do-
mains (Dimitri and Xue, 2005).

2.6 ANFIS model

ANFIS is a kind of neural network based on the
Sugeno fuzzy inference system (Takagi and Su-
geno, 1985), and was first introduced by Jang
(1993). This system uses either back propagation
or a combination of least squares estimation and
back propagation for estimating the membership
functions’ parameters.

Since the number of inputs in our study was great-
er than six, we cannot use grid partition because the
number of fuzzy rules would be too large (Farokh-
nia et al., 2011). So substractive fuzzy clustering
algorithms were used to estabilish rules based on
the relationship between input and output variables
(Jang and Sun, 1995). Subtractive fuzzy clustering

was introduced by Chiu (1994). In this study, the hy-
brid optimization method, which is a combination of
least-squares and back propagation gradient descent
method was used as an optimization method; also,
Gaussian and linear membership functions were
selected as optimum for input and output data, re-
spectively; and the number of membership functions
was determined through trial and error by varying the
range of influence from 0.5 to 1.5.

In the present paper, we used Matlab R2010b
for simulating the ANFIS and MLP models, and the
Weka package for the M5P model tree. The input data
were divided into two parts: training and testing data
in an 85 and 15% combination, respectively.

2.7 Data normalization and evaluation criteria
Climate data in a semi-arid region are sparse and
irregular in distribution; the best way to improve
the robustness of climate information would be data
normalization. The best range for data normalization
is 0.05-0.95 (Hsu et al., 1955), as follows:

Xporm = 0.05 +0.95 1 @)
max min

where, x,,,,,» and x, are the normalized and the original

inputs, and x,,;,, and x,,,, are the minimum and maxi-

mum input ranges, respectively.

Some of the common parameters, including root
mean square error (RMSE), mean error (ME) and
percent bias (PBIAS) were used to check the per-
formance of the applied models. These indices are
valuable because they disclose errors in the units (or
squared units) of the constituent of interest, which
aids in the analysis of results (Moriasi ef al., 2007).
The PBIAS measures the average tendency of the
simulated data to be larger or smaller than their ob-
served counterparts; the optimal value is 0.0. Positive
values indicate a model bias toward underestimation,
whereas negative values indicate a bias toward over-
estimation (Gupta et al., 1999). These parameters
were calculated as follows:

RMSE - ,/%Zl(o,-—a) 3)
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where N is the number of data points considered,
and O, and P; are the observed and predicted values,
respectively.

PBIAS =

3. Results

Factor analysis showed that the Kaiser-Meyer-Olkin
(KMO) statistic equals to 0.69, so the input variables
are suitable for factor analysis (Shrestha and Kazama,
2007). Eight components had eigenvalues greater
than 1 and contained 81% of the total variance. Thus,
eight climate signals (AMO, AMM, BEST, NINO3 .4,
NINO4, NTA, SOI, TNA) were selected as most ef-
fective after a Varimax rotation with factor loadings
of 0.904, 0.826, 0.952, 0.918, 0.855, 0.908, —0.849,
and 0.927, respectively.

Table I shows the performance of the ANFIS,
MS5P and MLP models in predicting SPI time series
12 months in advance. Regarding data testing, the best
performance of ANFIS was found for eight-months
in advance prediction, with RMSE, ME and PBIAS
values 0 1.032,0.011, and 3.55, respectively (Table I).
For the M5P model tree, the minimum values of RMSE,
ME and PBIAS are related to 10-months in advance
predictions (RMSE =0.828, ME =—0.007, and PBIAS

=-2.12). For MLP, the best performance of prediction
was obtained one step ahead compared to other models
(RMSE = 0.802, ME =-0.002, and PBIAS = -0.47)
(Table I). PBIAS indicated that predictions are mostly
overestimated (about 85, 54 and 70% for ANFIS, M5P
model tree and MLP, respectively).

In this paper, we used a Taylor (2001) diagram
(Fig. 2) to evaluate the accuracy of ANFIS, MLP,
and the M5P model tree. This diagram provides a
visual framework for comparing different model
results to a reference model or, mainly, to obser-
vations. The Taylor diagram is drawn by standard
deviation (STD), centered root mean square error
(RMSE) and correlation (COR) between different
models and observations. Statistics of STD, RMSE
and COR were computed for ANFIS, the M5P
model tree and MLP from one to 12 months in
advance (Fig. 2). The position of each model in the
plot shows how closely the simulated SPI pattern
matches with observations. From Fig. 2 it can be
seen that predictions of ANFIS and MLP are in
agreement with observations, unlike the M5P model
tree. Although predictions in ANFIS and MLP are
quite similar, some step predictions in MLP are
closer to observations (e.g., one-month-in-advance
predictions). Standard deviation of prediction data
indicated that none of the models was able to predict
fluctuations in observation data. Figure 3 compares
the observed and predicted SPI for the testing set in
a one-month lag time.

Table I. Performance of models in predicting SPI (from one to 12 months in advance).

ANFIS MS5P MLP
RMSE ME PBIAS RMSE ME PBIAS RMSE ME PBIAS
Months in advance 0.821 -0.135 —42.48  0.846 —-0.096 -30.12 0.802 -0.066 —20.57
1 0.820 —0.156 -48.93 0.882 —0.137 —42.97 0.802 -0.002 —0.47
2 0.783 -0.161 -50.60  0.872 —-0.107 -33.40 0.805 -0.080 -25.07
3 0.813 —-0.189 -62.41 0.870 —0.046 -14.40 0.828 —-0.285 -94.06
4 0.854 -0.192 -63.42 0.855 0.060 19.09 0.806 —-0.174 —57.30
5 0.821 -0.041 -13.84 0.861 0.057 17.96 0.837 0.044 14.39
6 0.902 -0.023 -7.60 0.886  0.057 18.82 0.861 -0.021 —6.83
7 0.886 —-0.078 -25.85 0917  0.047 15.39 0.869 -0.034 -11.18
8 1.032  0.011 355 0.883 0.068 22.55 0.892  0.031 10.31
9 0.876  0.055 18.15 0.851  0.024 8.07 0.827 0.042 13.84
10 0.844 -0.016 —5.64 0.828 -0.007 -2.12 0.814 -0.022 -7.53
11 0.932 -0.171 -59.27  0.875 -0.057 -18.84 0.857 -0.167 -58.17
12 0911 -0.185 —64.30  0.905 -0.087 -28.60 0.899  0.058  20.13




126 B. Choubin et al.

1.2

Normalized SD
o o
o o)

o
IS

0.2 |.C)

0 0.2 0.4 0.6 0.8 1 1.2
Normalized SD

| @ Observed @ ANFIS @M5P OMLP |

Fig. 2. Comparisons of observed and predicted SPIs by
MLP, ANFIS and the M5P model with a one-month delay.

4. Discussion
In this study we used climate indices to predict SPI.
Factor analysis was used to determine the most im-
portant of large-scale climate signals. Sea surface
temperature (SST) on the Pacific Ocean and ENSO
(including the BEST, NINO3.4, and NINO4 sig-
nals), the southern oscillation index (SOI) and SST
on the Atlantic Ocean (including the AMO, AMM,
NTA, and TNA signals) were selected as the most
important signals. In previous studies, Nazemosadat
and Cordey (2000), Mariotti et al. (2002) and Pon-
gracz and Bartholy (2006) showed the direct effect
of ENSO on precipitation. Karabork et al. (2005)
indicated an inverse relationship between SOI and
precipitation.

The ANFIS model was found to have the best
performance for the eight-month in advance pre-

dictions, whereas the M5P model performed better
for 10-month in advance predictions and the MLP
network for one-month in advance. Error parameters
(Table I) indicated that the MLP network performance
was a little better than the other two models, while
Dastorani et al. (2010) showed that the potential of
ANNSs with the ANFIS model is almost the same
in predicting dry land precipitation. The Leven-
berg-Marquardt training algorithm (used in the MLP
network) is more powerful and faster than the stan-
dard back-propagation algorithm (used in ANFIS)
(Abyaneh et al., 2011). This may be the reason for
the better efficiency of the MLP model compared to
ANFIS. Also, we used the Taylor diagram (Fig. 2)
to investigate the accuracy of the models. It is clear
that MLP has a better aptitude in comparison with
the M5P model tree and ANFIS.

5. Conclusion

Modeling is important in hydrology. This study
investigated the prediction of SPI by using several
models based on large-scale climate indices. Results
showed that the performance of MLP was better than
the M5P model tree and ANFIS (Table I). The best
performance of the MLP model for SPI prediction
was achieved with eight inputs, two hidden and one
output neuron (MLP [8, 2, 1]) for a one-month-in-
advance prediction. Also, the Taylor diagram (a very
useful tool that compares the performance of different
models) indicated that MLP is more efficient than the
MS5P and ANFIS models. There are many parameters
for the determination of models’ performances, but
hydrologists need a tool that can compare different
models. The Taylor diagram would be helpful for this
purpose. We hope modelers further use this tool in
natural sciences and hydrology modeling.

............ Observation

MLP = = = ANFIS

— M5P

Fig. 3. Comparisons of observed and predicted SPIs for watershed in a

one-month lag-time.
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