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RESUMEN

Se analiza la tendencia de altos valores de ozono troposférico sobre la Ciudad de México basados en ob-
servaciones para los afios 2001-2014. Los datos consisten en maximos de ozono mensuales basados en 29
estaciones de monitoreo. Dada la gran cantidad de valores faltantes, se consideran los maximos mensuales
sobre cinco zonas geograficas de la ciudad. Se evaluan las tendencias de ozono en el tiempo mediante un
modelo estadistico que asume que las observaciones siguen una distribucion generalizada de valores extre-
mos, la cual nos permite estimar un parametro de tendencia para cada zona y un parametro de tendencia
global. Se comparan los resultados de este modelo con un modelo que asume que las observaciones siguen
una distribucion normal. Nuestros estudios muestran alguna evidencia de que estos maximos mensuales de
ozono han disminuido durante el periodo de estudio.

ABSTRACT

We analyze trends of high values of tropospheric ozone over Mexico City based on data corresponding to the
years 2001-2014. The data consists of monthly maxima ozone concentrations based on 29 monitoring stations.
Due to the large presence of missing data, we consider the monthly maxima based on five well identified
geographical zones. We assess time trends based on a statistical model that assumes that these observations
follow an extreme value distribution, where the location parameter changes in time accordingly to a regression
model. In addition, we use Bayesian methods to estimate simultaneously a zonal and an overall time-trend
parameter along with the shape and scale parameters of the Generalized Extreme Value distribution. We
compare our results to a model that is based on a normal distribution. Our analyses show some evidence of
decaying ozone levels for the monthly maxima during the period of study.

Keywords: Trend analysis, GEV distribution, Mexico City ozone levels, Bayesian methods.

1. Introduction in its metropolitan area, air-pollution has been histor-
For many decades environmental pollution has been ically a major concern. According to Lezama (2000),
a problem that affects major cities. In particular for  since the beginning of the 1940s, which corresponds
Mexico City, with more than 21 million inhabitants  to the start of an explosive growth in industry and
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population in Mexico, air pollution increments were
estimated to a 3% annual rate. In addition, air visi-
bility diminished during the 1940s and 1950s, which
became a strong reason for authorities, scientists and
citizens in general, to learn more about the health
risks associated with exposure to atmospheric pol-
lutants. After various years, these concerns led to the
creation of Mexico City’s environmental atmospheric
monitoring system known as Sistema de Monitoreo
Atmosférico (SIMAT).

Currently SIMAT is formed by the Red Manual
de Monitoreo Atmosférico (Manual Atmospheric
Monitoring Network, REDMA), the Red de De-
posito Atmosférico (Atmospheric Deposit Network,
REDDA), the Red de Meteorologia y Radiacion
Solar (Meteorology and Solar Radiation Network,
REDMET) and the Red Automatica de Monitoreo
Atmosférico (Automated Atmospheric Monitoring
Network, RAMA) which continuously measures
levels of ozone (O;), sulphur dioxide (SO,), nitro-
gen oxides (NO,), carbon monoxide (CO), particles
less than 10 um (PM,,), and particles less than
2.5 um (PM,;s). Nowadays, RAMA consists of
various monitoring stations across Mexico City’s
metropolitan area.

Table I presents information about the 29 RAMA
stations that monitor O, concentrations over Mexico
City. The name of each station followed by its acro-
nym is included along with the geographical area to
which each station belongs. We report the number
of observed monthly maxima that is available for
each station and for the years 2001-2014. For these
years, there is a total of 168 possible monthly maxima
(T=168). It is worth noting that in several cases, there
is a limited number of observations available due to
shutdowns or recent opening of stations.

The presence of hydroxyl radicals and organic vola-
tile compounds (OVC) in the atmosphere from natural
or anthropogenic sources, produce changes in chemical
equilibrium towards higher ozone concentrations. The
anthropogenic sources that are more relevant as tro-
pospheric ozone precursors are gases generated from
vehicle emissions, industrial emissions and chemical
sources. As described on SIMAT (2014) and SSA
(2014), it is typically the case that these precursors
originate in high-density urban areas and are carried
by winds for various kilometers producing increments
in ozone concentrations in areas that are less densely
populated. High tropospheric levels of O; are a major

Table I. Information about 29 RAMA monitoring stations.

Zone Station Abbreviation Data
Atizapan ATI 23
Cuautitlan CUT 24
Northwest FES Acatlén FAC 168
Tlalnepantla TLA 168
Tultitlan TLI 42
Acolman ACO 87
La Presa LPR 36
Los Laureles LLA 39
Northeast Montecillo MON 166
San Agustin SAG 165
Xalostoc XAL 168
Villa Flores VIF 42
Camarones CAM 42
Hospital General
Center de México HGM 34
Iztacalco 1ZT 90
Merced MER 168
San Juan de Aragon SJA 42
Centro de Ciencias
de la Atmodsfera CCA 5
Coyoacan COoY 115
Cuajimalpa CUA 161
Southwest b 4regal PED 168
Santa Fe SFE 35
Santa Ursula SUR 165
Tlalpan TPN 138
Chalco CHO 87
Nezahualcoyotl NEZ 42
Southeast Tlahuac TAH 167
UAM-Iztapalapa UlZz 167
UAM-Xochimilco UAX 35

cause of respiratory issues when long term exposures
are predominant. Epidemiological studies have found
associations between high levels of O; and mortality,
hospital admissions and total number of emergency
hospital admissions. In consequence, the Mexican
official norm NOM-020-SSA1-1993 established a
permissible maximum limit of O; of 0.11 ppm. Accord-
ing to Pefalosa (2014), this norm has been recently
updated and a monitoring site satisfies the one-hour
limit when each of its hourly concentrations is less or
equal to 0.095 ppm.

There have been several studies based on physics,
chemistry and statistics dealing with how ozone con-
centrations in Mexico City arise from other pollutants,
among them Bravo et al. (1992) and Cortina-Ja-
nuchs et al. (2009). In particular, the importance of
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performing analyses about trends of O; over Mexico
City has become evident given its climatological and
zonal characteristics, as well as its density of popu-
lation. A related paper is Reyes et al. (2009), which
studied ozone trends via a regression model through
the quantile function of an extreme value distribution
that included related chemical and environmental co-
variates. The paper by Huerta ez al. (2004) proposed a
spatial-temporal model for hourly ozone concentration
in Mexico City where temperature is included as a
covariate and which permits estimation of missing
values for both temperature and ozone. This model
is capable of producing short term forecasts and of
performing spatial interpolation of hourly O; levels
through a full Bayesian approach via Markov Chain
Monte Carlo (MCMC) methods. Furthermore, Huerta
and Sans6 (2007) proposed an analysis of extremes
for Mexico City ozone levels combining the gener-
alized extreme value (GEV) distribution with state
space models. Among other things, their approach
considered the flexible estimation of time-varying
components in extreme data. On the other hand, they
consider a block-maxima approach for periods of
24 hours, while in this paper we consider alternative
models that have a better interpretability in terms of
trend behavior, a more focused time period of the data
and a blocking scheme of a month. Loya et al. (2012)
consider a model for which the Mexico City ozone
concentrations follow a non-homogenous Poisson
process which includes the relevant covariates through
alogarithmic link. Their conclusion based only on data
for three monitoring stations, is that the covariates
which more impact ozone levels are temperature and
sulphur dioxide.

In this paper, we analyze monthly maximum
ozone concentrations for Mexico City based on 29
stations that monitor this pollutant and for the all
the months of the period from 2001 to 2014. Given the
large amounts of missing information in the sta-
tion-by-station observations for this period of study,
we computed maximum values for each of the five
geographical zones that the RAMA uses to classify
its monitoring stations, reported in Table I: Northwest
(NW), northeast (NE), center (C), southwest (SW) and
southeast (SE). The focus of our investigation is on
21st century data behavior rather than on very long
historical trends. Although the definition of an extreme
value is rather ambiguous, we consider that a monthly
maximum is of interest and representative of ozone

events in Mexico City. Technically speaking, our paper
assumes that monthly maximum values of O; follow
an extreme value distribution with a location parameter
u=po+ B (t—1)/sd(t), where t represents an index
of the chronological order in which the monthly max-
ima was observed, starting from January 2001 to De-
cember 2014 and including all months of the year. The
values of the time index # run from =1 to = 168. The
sample average of all time index values is7 and sd(?), is
its corresponding standard deviation. Using a Bayesian
approach, we assume that £, and £, the parameters
of each zone, are random quantities that follow some
random effects process. This provides a global mean
estimate for both parameters and in particular for f;
This estimate can be linked to an overall trend estimate
of how much g, the location parameter, has changed in
time. In addition, we compare the results obtained via
a GEV distribution with a similar hierarchical model
that simply assumes the observations follow a normal
or Gaussian distribution where its mean has the form
Po+ Po(t—1)/ sd(®), t=1,2...,168.

2. Methods

2.1 Generalized extreme value (GEV) distribution
The GEV distribution arises as a limit distribution
as presented by Pickands (1975) and in reference
to block maxima extreme values. The GEV dis-
tribution focuses on the statistical behavior of Z,
= max{Y,...,Y,}, where Y, Y,..., is a sequence of
independent and identically distributed random vari-
ables with common distribution function G. Here m
represents the block size used to compute Z,,. A limit
theorem shows that Z,, has a distribution function F
that is non-degenerate and belongs to the extreme
value family which includes the Gumbel, Frechet or
Weibull distributions. The GEV distribution unifies
the parametric representation of the three different
families associated to the extreme value family as
presented, for example, by Coles (2001), Reiss and
Thomas (2001), and Haan and Ferreira (2006). The
GEYV distribution has a cumulative distribution func-
tion of the following form:

F(Z|,u,a,§)=exp{—[l+§

Z;”)]M} n

for 1 +¢ (5%)> 0 where p is the location param-
eter, 0 > 0 the scale parameter and ¢ the shape
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parameter. In practice, one selects a finite value of
the block size m and treats the GEV distribution as
a probability model to be estimated and to represent
the observed values of Z,,. This model can be as-
sessed through plots that compare empirical versus
model-based probabilities as discussed extensively in
Coles (2001). In our case, Z,, are the monthly maxima
of Os levels per geographical zone in Mexico City as
defined through Table I.

2.2 Bayesian inference

Asume we are interested on making inferences
about an unknown set of parameters @ and that we
have some prior beliefs about this vector, which
can be expressed in terms of a prior probability
density function p(@). In addition, asume that for n
observations Z = (Z,...,Z,) its probability distribution
depends on @ and is expressed by f(Z]#). Bayesian
inference is based on p(6|Z) the posterior probability
distribution of @ given Z, which is computed via the
Bayes theorem as

p(0|2) = f(Z]0) p(0).

where o« means “proportional to”. Summaries of
this probability distribution such as the mean,
median or quantiles provide a few of the basic
elements of statistical inference from a Bayesian
perspective. In practice it is often necessary to ap-
proximate p(6|Z) and its summaries via numerical
methods. MCMC methods offer a flexible way
to deal with these high dimensional integration
problems through iterative stochastic simulation
algorithms that provide samples from the posterior
and/or predictive distributions of interest. These
samples can then be summarized in terms of his-
tograms, sample means, medians or quantiles as
illustrated in Lee (1997) and Koch (2007). Here @
is a generic way to represent all quantities that are
uncertain in a statistical model. This could consider
true parameters or unobserved data points such as
missing or future observations.

2.3 Statistical modeling

We assume that the monthly maximum values of O;
per geographical zone i, Z,,,...,Z;,;, are observations
that follow a GEV distribution of the form

Zl,i ~ GEVWU? o, é): (2)

Mt :)BO,i +ﬂl,i(t_ i)/Sd(t), t= 1,29“'5
i=1,2,..,5

168 3)

where the location parameter u,; depends on f,; and
P Po. 1s an intercept parameter while f, ,represents
a trend in ¢ for the location parameter and for each
station; ¢ is a time index that denotes consecutive
monthly maxima values ordered chronologically,
while 7 is the mean of all the ¢ values and sd(?) its
standard deviation. Each value of 7 is associated to
a monthly maximum zonal value that considers all
the months of the years 2001-2014. It is worth noting
that the grouping by geographical zone led to ob-
servations without missing values, which is a major
issue in terms of model assessment when working
with station level data. o and & are the same for all
stations and denote the scale and shape parameters
of'the GEV distribution as described in section 2. We
also considered a version of our model that allows
for o and £ to vary across zones and compare it to the
constant model. The variability on the estimates of
these parameters is very small, therefore, we decided
to report results for the simpler model described in
this section. We also assume that f,; and S, ; are in-
dependent random quantities, also known as random
effects, that follow a normal/Gaussian probability
distribution and that are centered around the means
mg and m,, respectively. More specifically,
Boi~N (mo, vo), Br;~ N (my, vy); i=12,..,5 4)
where v, and v, represent the variances of 5, and £, .
As previously described, in a Bayesian context,
prior distributions are required for all model parame-
ters. p(mo), p(m;), p(v), p(v1), p(6) and p(&) denote the
marginal prior distributions of mg, m,, vy, v;, 0 and &,
respectively. Since there is no preliminary available
information on these parameters, we select locally
uniform distributions with a range in (-0, ) for
mg and m;. Since o, vy, v, must be quantities greater
than zero, we chose gamma and inverse gamma
probability distributions centered at the value 1 and
with a large variance. For the shape parameter ¢ we
assigned a uniform prior distribution on (0.5, 0.5) to
impose regularity properties of the maximum likeli-
hood estimators of the GEV distribution as described
by Coles (2001). In our analyses, this prior has not
a significant impact on the resulting posterior distri-
bution of ¢ and therefore in the analyses provided
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in this paper, one could use other priors where ¢
belongs to an unbounded set.

Alternatively to a model based on a GEV distribu-
tion, we also consider a model where the observations
Z; follow a normal distribution M(u,,, o) where u,; has
the same structure as described in Eq. (3) and o is a
common variance across zones. For this case, y,; is the
mean of the observations and changes on this mean are
estimated via the values f,; and £, ;. The parameters
Po,and p, ;are also treated as Gaussian random effects.

3. Results

We sampled the joint posterior distribution defined
by the model in section 2.3 using the software Open-
BUGS/Winbugs as in Lunn et al. (2000). A burn-in
period of 10000 MCMC iterations was performed,
with an additional 10 000 MCMC iterations collected
to produce posterior inferences. The MCMC produce
samples of the posterior for all unknown quantities
of our model and achieves convergence very quickly.
Convergence was checked and monitored through
history or trace plots and autocorrelation plots. In
Figure 1 we show time series of the monthly maxima
of O3, for the years 2001-2014 and for each of the five
geographical zones as defined through the stations
presented in Table 1. In addition, we include a zonal
point estimate of the median of the GEV distribution
given by the expression y,; + a@ (see Coles,
2001). This posterior mean estimate was computed
as a sample average across the MCMC simulations
of fu., B1.» o and . All the median estimates are lines
that have a negative slope given the model parameter
structures. There is no missing information for the
data shown in Figure 1. However, if one attempts to fit
a similar model to the station-by-station observations
of Table I, the amount of missing information is so
large that our model provides very poor predictions
for stations where the percentages of missing data is
50% or higher.

Figure 2 presents histograms of the posterior
samples and density estimates of the marginal pos-
terior distribution for f,, i = 1,2,...,5 labeled by its
geographical zone. The histograms are drawn by
smoothing the MCMC samples with a density esti-
mator. Table II reports posterior summaries for each
Po; parameter where the indexes i = 1,2 denote the
NW and NE zones, i = 3 represent the C zone and
i=4,5 denote the SW and SE zones. The summaries
include posterior mean estimates, posterior standard

deviations and 95% credible intervals computed
with the 2.5 and 97.5% quantiles. The values of f;
range from 0.12 to 0.16 and the posterior standard
deviations are very similar across zones. The southern
zones have greater estimates of 5, meaning that at the
beginning of 2001, its location parameter had higher
values. Furthermore, Figure 3 presents histograms of
the posterior samples and density estimates of the
marginal posterior distribution for f,; while Table
III reports posterior mean estimates, posterior stan-
dard deviations and 95% credible intervals for these
parameters. It is worth noting that 5, ; determines the
rate of change in ¢ for the median estimates of Figure
1. The posterior mean estimates have negative values
in all the cases. The posterior standard deviations
have almost the same values across zones. The 97.5%
quantile is less than zero in all cases, therefore the
credible intervals are completely contained on the
negative side of the real line. The posterior distri-
butions of Figure 3 confirm that the S, parameters
are essentially negative with a very high probability.

In Figure 4 we present histograms and marginal
posterior densities for m,, m,, o and ¢ according to
the model described in section 2.3. The histograms
are drawn by smoothing the MCMC samples with a
density estimator. In Table IV we report some pos-
terior summaries for these parameters along with
summaries for v, and v,. The estimated variances of
Po;and S, ; around the values m,and m, are of the order
of 0.01. For m, its posterior probability distribution
is centered at around —0.0170 with a range of values
that covers negative and positive values. In particular,
the posterior probability of m, being less than zero
given our statistical model and the data, P(m, <0|2),
is 0.6955. This value is obtained by the frequency of
times in which m, is less than zero over the total of
10000 MCMC draws of m,. The global mean of §,
is negative with a moderately high probability value,
although the probability interval of m, includes zero.
The estimated value of ¢ is around 0.02 and the shape
parameter £ is clearly negative which corresponds to
atail behavior of an inverse Weibull according to the
extreme value distribution. Furthermore, we compare
the resulting posterior estimates for m, by fitting our
model to the observations for years 2001-2006 and
then for the observations for years 2007-2014. Our
comparisons are illustrated in Figure 5 and estimates
of m, with credible intervals are reported in Table V.
We notice that for years 2007-2014 the probability
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Fig 1. Monthly maxima of ozone concentrations for five geographical zones of Mexico City and estimates of

(log@) <-1)
Myit o=

given by its posterior mean.

density of m, is more centered around zero than estimate is —0.0048. The probability for m, being less
the density corresponding for all years (2001-2014)  than zero is equal to 0.6868 for the period 2001-2006,
and the one for 2001-2006. In fact, the mean estimate  and is equal to 0.5557 for the period 2007-2014,
of m, for 2001-2006 is —0.0168, very close to the one ~ which essentially gives equal chance to this global
obtained for all years, while for 2007-2014, the mean  parameter of being negative or positive.
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Fig. 2. Posterior distributions for f,;, i = 1...,5.

Table II. Posterior mean, posterior standard deviations
and credible intervals for the parameter f,, for five
geographical zones: Northwest (NW), northeast (NE),
center (C), southwest (SW) and southeast (SE).

Station Mean SD 95% CI

NwW 0.1416  0.0017 (0.1383, 0.1450)
NE 0.1276  0.0016 (0.1245, 0.1307)
C 0.1417  0.0016 (0.1386, 0.1447)
SW 0.1645 0.0016 (0.1613,0.1677)
SE 0.1481 0.0016 (0.1450, 0.1513)

In addition, Figures 6 and 7 illustrate the predic-
tive performance of our model. We pretended that
the five observations from December 2014 were
missing, re-fitted the model and sampled the posterior
predictive distributions for these five cases as part of
our MCMC runs. In Figure 6 we show out-of-sample
histograms and densities of the marginal predictive
distributions by zone and for December 2014. The
triangle on the x-axis represent the actual observed
value. As we can see from this figure, the actual ob-
served values are well contained within the support
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Fig. 3. Posterior distributions for f,,, i = 1...,5.

Table III. Posterior mean, posterior standard deviations
and credible intervals for the parameter f,; for five
geographical zones: Northwest (NW), northeast (NE),

center (C), southwest (SW), southeast (SE).

Station  Mean SD 95% CI
NW ~0.0183  0.0017  (-0.0215,-0.0150)
NE ~0.0095  0.0016  (~0.0127,-0.0062)
C 00136 0.0016  (~0.0169,-0.0105)
SW ~0.0268  0.0017  (-0.0301,-0.0235)
SE —0.0192  0.0017  (-0.0225,-0.0158)

of the predictive distributions. In Figure 7 we show
the posterior predictive mean (solid line) for each
data point along with their 2.5% and 97.5% predic-
tive limits (dashed line). The predictive means and
limits are driven by the model assumptions that were
made. The proposed model captures time changes in
a linear fashion and provides reasonable marginal
predictions. In addition, Figure 8 reports informa-
tion about the u,; parameters that define the trend
behavior of the model. The solid lines are the values
of the posterior mean estimates of each parameter,
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Table IV. Posterior summaries for parameters m, m;, vy, R
v,,0 and &
e - —— 2001-2014
P t M SD 95 % CI -- 2001-2006
arameter ean 0 " I | B 5007-2014
my 0.1449 0.0465 (0.0551, 0.2338) _S
m —-0.0170 0.0456  (-0.1072, 0.0724) G © o
Vo 0.01 0.0167 (0.0018, 0.0390) 3
Vi 0.0099 0.0157 (0.0018, 0.0414) <
o 0.0200 54E-4  (0.0190, 0.0211)
¢ -0.1670 0.0224  (-0.2087,-0.1212) N

while the dashed lines define the limits of 95% ' ' ' '
credible intervals. The intervals tend to narrow at ' o
the middle of the time period of the data while the
posterior mean values are lines with negative slope. 00 5414500122006 and 2007-2014
Figures 7 and 8 clearly highlight the differences in ’ '
uncertainty between prediction and parameter esti-

Fig. 5. Probability densities for parameter m, for all years

mation, but lead essentially to similar point estimates ~ Table V. Posterior summaries for years 2001-2014, 2001-

of trend behavior in the data. 2006, 2007-2014.

Years Mean 95% CI
3.1 Model assessment and comparison to a Gaus- ’

P(m, < O|data)

sian distribution model 20012014 ~0.0170 (—0.1072, 0.0724)
20012006 ~0.0168 (~0.1067, 0.0739)

For model comparisons we rely on the Deviance 2007-2014 _0.0048 (-0.0909. 0.0811)

Information Criterion (DIC) as presented in, for

0.6955
0.6868
0.5557
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example, Banerjee (2014). In short, DIC is a metric
that combines goodness of fit with model complexity
into a numerical summary. The goodness of fit is
measured through a deviance statistic that uses the
log-likelihood function of the formulated model.
Model complexity provides an estimate of the effec-
tive number of parameters. Alternatively, DIC can

be computed as the posterior mean deviance minus
the deviance at the posterior mean of the parame-
ters. Therefore, this metric can be easily calculated
via MCMC methods and can be monitored with the
Openbugs software. Similar to the Akaike Informa-
tion Criterion (AIC), models that achieve smaller
values of DIC are considered to be better. For the
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Fig. 7. In sample predictive means and 95% predictive intervals shown by zone.

O; monthly zonal maxima of 2001 to 2014, and the
proposed model of section 2.3 based on the GEV
distribution, the DIC value is equal to —4069 with an
effective number of parameters equal to p, = 11.98.
On the other hand, for the model based under the
assumption that the observations follow a Gaussian
distribution, the DIC value is equal to —4045 with an
effective number of parameters equal to p, = 11.46.
In terms of these DIC criteria, the GEV model pro-
vides a better fit to our monthly maxima data relative
to a model where the observations are assumed to

follow a normal distribution. We consider that DIC
identifies the GEV model as a better model, since
it is capable of capturing observations at the tails
that a simple normal distribution may not be able to
represent well. However, some of the results of our
analyses under a normal model are comparable to the
model based on the GEV distribution. For example,
the posterior mean estimate of m, under the normal
model is —0.01804, with a posterior standard devi-
ation equal to 0.04566 and a 95% credible interval
equal to (=0.1076,0.0700). The posterior probability
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that m; is less than zero, P(m, < Oldata) = 0.6981.
For my, its posterior mean is equal to 0.1537, with
a standard deviation of 0.04361 and a 95% credible
interval of (0.067, 0.2419).

The linearity assumption on y is a basic assump-
tion to represent non-stationarities in a GEV distri-
bution framework. More general non-linear models
based on the state model framework had been studied
in Huerta ef al. (2004) and Huerta and Sans6 (2007).
Certainly these models offer an interesting alternative

to the statistical models proposed in this paper. How-
ever these models are harder to estimate and require
a very careful assessment of MCMC convergence.
They also lack the simplicity of interpretability of
the trend estimation through the m, parameter that
we offer in this paper. Furthermore, based on the
posterior mean estimates of the model parameters,
we considered residual probability plots for the GEV
model specification as in Coles (2001) and qq-plots
for the normal/Gaussian model. Figure 9 shows an
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estimates of the parameters. Northwest zone.

example of these graphs for the observations corre-
sponding to the NW zone. The probability plot for
the GEV distribution follows closely the identity line,
while the qq-plot shows some deviation from the qq-
line for the largest values. The graphs for other zones
are comparable and in some cases (C and SW
zones) do not give any indication of lack of fit for
the Gaussian model.

We also fitted a model where both the scale and
shape parameter of the GEV distribution depend on
the zone, so that Y, follows a GEV (u;, 0,, &;) distri-
bution where each ¢; has a gamma prior distribution
and each & follows a U(-0.5, 0.5) distribution,
i=1,2,...,5. The posterior mean estimates vary from
0.018 to 0.022 while the estimates for & go from
—0.13 to —0.18. On the other hand, the DIC value
for this other model equals —4063 with the number
of effective parameters equal to 19.04. The better
model still remains to be the one where both ¢ and
&are constant across the zone. However, notice that
the resulting m, posterior mean estimate is now
equal to —0.0172 with a 95% credible interval of
(=0.102, 0.07014).

4. Conclusions and other considerations

We have presented an application of the theory of
extreme values in combination with Bayesian sta-
tistical modeling for a set of monthly maxima O;
measurements derived from the RAMA network
in Mexico City, and with the purpose of character-
izing some of the behavior of these measurements
along the years 2001-2014. Our analyses show that

there is some evidence of decaying levels for these
21st century monthly maxima. We are also able to
provide an overall estimate of the trend change, the m,
parameter, which pulls information from all the zonal
data into a unique estimate along with probabilities
estimates of this parameter being negative. For more
recent observations corresponding to 2006-2014, the
m; does not provide any evidence of trend behavior
for the ozone maxima.

An interesting alternative approach to the one
proposed in this paper, is to treat f,, and f,; as
spatial random effects rather than as pure random
effects. This falls within the context of spatial areal
data modeling as in Banerjee (2014). Along with the
MCMC methods, this involves the specification of a
5 x5 adjacency matrix to define spatial associations
between the five zones of interest. In a preliminary
analysis of this type of modeling, for a situation
where the center zone is neighbor of any other zone,
the northern zones are neighbors only of each other
and the center zone, and the southern zones are neigh-
bors of each other and of the center, we found that
the posterior mean estimate of m, is —0.0175, with
a 95% credible interval equal to (—0.019, —0.016).
Other parameter estimates resulted very similar to the
model that treats the parameters as random effects
exclusively. The question still remains open in terms
of deciding an appropriate neighborhood structure for
the spatial random effects, and whether this type of
models provide a more appropriate representation of
the ozone maxima analyzed in this paper as compared
to a pure random effects model.
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