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RESUMEN

El presente estudio analiza los posibles impactos futuros del cambio climatico sobre los eventos meteo-
rolégicos de sequia en Turquia, utilizando para ello una nueva técnica estadistica de reduccion de escala
(downscaling) basada en regresion logistica politomica. Esta técnica, conocida como “estadisticas de salida
del modelo” (model output statistics, MOS), esta disefiada para la reduccion de escala de las categorias de
sequia del indice estandarizado de precipitacion (SPI, por sus siglas en inglés). El principal objetivo de un
procedimiento de reduccion de escala es determinar la influencia de la variabilidad climatica de gran escala
y los cambios proyectados en las variables a nivel regional y local. Los predictores de gran escala utilizados
en este estudio se obtuvieron a partir de simulaciones del modelo canadiense de circulacion general acoplado
de segunda generacion (CGCM2, por sus siglas en inglés), las cuales abarcan de 1940 a 2100 e incluyen
tres escenarios socioecondmicos: control, con los limites de la concentracion atmosférica de gases de efecto
invernadero en el siglo XX, y los escenarios A2 y B2 del Informe especial sobre escenarios de emisiones
del Panel Intergubernamental de Cambio Climatico. Se utilizaron observaciones de 96 estaciones meteo-
rologicas para calcular los valores anuales del SPI para el periodo 1940-2010, dejando los tltimos 10 afios
para validacion contra los resultados simulados por el CGCM2. Los resultados del MOS derivados de la
simulacién del clima denominada control coincidieron con los patrones observados en el clima actual. Los
resultados del MOS derivados de escenarios climaticos futuros llevan a concluir que hay una probabilidad
disminuida de que se presenten condiciones muy humedas o extremadamente humedas. Adicionalmente, las
probabilidades de que las condiciones sean cercanas a lo normal disminuiran en la costa del Mar Negro, y
aumentaran en la transicion del Marmara y en Anatolia oriental.

ABSTRACT

This study investigates the possible impacts of future climate change on meteorological drought events in
Turkey by using a new statistical downscaling technique based on polytomous logistic regression, denoted as
the model output statistics (MOS) technique. It is designed to downscale the drought classes of the 12-month
Standardized Precipitation Index (SPI). The main goal of a downscaling procedure is to determine the influ-
ences of large-scale climatic variability and the projected changes on the local scale-regional variables. The
large-scale predictors used in this study were obtained from the output of the Second Generation Canadian
Coupled General Circulation Model (CGCM?2) simulations, run from 1940 to 2100 for three socioeconomic
scenarios, namely control, with the constraint of the 20th century atmospheric concentration of greenhouse
gases, and the SRES A2 and B2 scenarios. Observations from 96 meteorological stations were used to
estimate 12-month SPI values for the period 1940-2010, leaving the last 10 years for validation against
the results simulated by the CGCM2. The MOS results derived from the control climate simulation agree
with the observed patterns for present climate. The MOS results derived from future climate scenarios lead
to conclude that there is a decreased probability of very wet and extremely wet conditions. In addition, the
probabilities of near-normal conditions will decrease in the Black Sea coast and will increase towards the
Marmara Transition and continental eastern Anatolia regions.

Keywords: Climate of Turkey, statistical downscaling, logistic regression, standard precipitation index (SPI).
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1. Introduction

Droughts in any form in the meteorological, hydro-
logical and agricultural fields are the anticipated
results of climate change, particularly in subtropi-
cal regions including the Mediterranean countries.
Droughts will become more prevalent and thus,
more complex water management and drought
monitoring tools will be required (IPCC, 2001,
2007). The impacts of climate change on future
weather and climate are generally evalauted by
running general circulation models (GCMs) based
on various scenarios.

The Mediterranean region, including Turkey,
is one of the areas in which GCMs simulate de-
creases in precipitation. For instance, Ozturk et
al. (2012) have investigated the annual time-scale
performance of the regional climate model Reg-
CM4.0 in simulating annual change of dry-spells
and extreme-precipitation in the central Asian re-
gion by running the model for two 30-yr. periods
(1971-2000 and 2071-2100). They used the ERA40
reanalysis as boundary conditions of the regional
climate model for the present period (control) and
global datasets of EHSOM for the future with the
IPCC SRES A1B scenario. They concluded that
the southern part of Central Asia will be most vul-
nerable for droughts in the future, and there will
be an increase in extreme drought conditions over
almost the whole region.

However, simulations of the GCMs at coarse res-
olution may contain inherent inconsistent variability
in climate variables. In view of that, a downscaling
process is necessary to reduce uncertainty. For
example, in a water management plan, the possi-
ble impacts of climate change on precipitation are
remarkably important for local-scale studies, but
the resolution of the GCMs is not suitable; hence,
the scale-gap should be bridged with the local-scale
variables (i.e., precipitation). This can be achieved
either by empirical-statistical downscaling (which
also includes probabilistic weather generators, etc.),
or by physical-dynamical downscaling (e.g.,
Karl et al., 1990; Wilby et al., 1999; Easterling, 1999;
Timothy and Hulme, 1999; Tatli et al., 2004, 2005;
Coulibaly et al., 2005; Fowler et al., 2007; Tolika et
al., 2007; Anandhi et al., 2008; Radu et al., 2008,;
Hertig and Jacobeit, 2008; Tatli, 2013).

Many useful techniques have been suggested in
traditional statistical-downscaling procedures, such

as linear and nonlinear regression, artificial neural
networks (ANNSs), canonical correlation analysis
(CCA) and weather generator, which are are exam-
ples of methods for deriving relationships between
large-scale predictors and local-scale predictands
(Semenov and Barrow, 1997; Conway and Jones,
1998; Wilby et al., 1998; Kocak et al., 2004; Tatli et
al., 2004, 2005; Dibike and Coulibaly, 2006; Lou-
kas et al., 2008; Schmith, 2008; Mishra and Singh,
2009; Mishra et al., 2009; Vasiliades et al., 2009;
Tatli, 2013).

Additionally, other studies have proposed are
dealing with new methods, concepts, comparative
studies and modeling, and have been applied in
many fields (e.g., Wilby and Wigley, 1997; Huth et
al., 2000, Hay and Clark, 2003; Fowler et al., 2007;
Mascaro et al., 2008).

Monitoring drought via the standard precipitation
index (SPI) was first introduced by McKee et al.
(1993, 1995), and found immediate applications in
many fields (e.g., Guttman, 1998, 1999; Hayes et
al., 1999; Wilhelmi and Wilhite, 2002; Steinemann,
2003; Wu et al., 2005; Tiirkes and Tatli, 2009; Vasil-
iades et al., 2009). The SPI approach has several
advantages including its simplicity and temporal
flexibility, which allow its application to water re-
sources on all timescales. For instance, Hayes et al.
(1999), based on a case study of drought in Texas,
concluded that the SPI method is an important tool
that could be operationally used in a local, state,
regional, or national drought monitoring system in
the United States.

In this study, a statistical-downscaling model
based on the logistic regression technique is sug-
gested for downscaling 12-month SPI values using
large-scale precipitation series on the four nearest
grid points around the selected station. The large-
scale simulated precipitation values are used as
predictors, and logistic regression is suggested as
a downscaling technique for projecting future SPI
values. The paper proceeds as follows: Section 2
describes the employed methods. Results are giv-
en in Section 3. Finally, Section 4 comprises the
conclusions.

2. Data and methodology

2.1 Data and study area

The dataset of local-scale variables used in this study
is the monthly precipitation records of the Turkish
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State Meteorological Service. The selected meteoro-
logical stations provide a suitable spatial distribution
of the rainfall regions (Fig. 1, Table I) of Turkey.

The large-scale predictors needed for the study
were extracted from the precipitation series simulated
by the Second Generation Canadian Coupled General
Circulation Model (CGCM?2) of the Canadian Cen-
tre for Climate Modeling and Analysis (CCCma).
For more details about the CGCM2 one may refer
to the website of the CCCma (http://www.cccma.
ec.gc.ca/models/models.shtm), Flato et al. (2000),
or the IPCC data distribution center (http://www.
mad.zmaw.de/[PCCDDC/html/ddcgcmdata.html).
The atmospheric component of CGCM2 is a spectral
model with triangular truncation at wave number 32
and a surface grid resolution of roughly 3.75 x 3.75°
with 10 vertical levels.

2.2 Methodology

A logistic regression technique is used in this study
to statistically downscale results from simulations
of a global climate model with coarse resolution.
Some definitions are needed for clarifying the ques-
tion of how a logistic regression can be used as a
downscaling technique. In simple logistic regression,
the dependent variable (i.e., predictand) is usually
dichotomous or binary, that is, the predictand can
assume the value of 1(one) with a probability of P for
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success and the value of 0 (zero) with a probability
of 1-P for failure. However, the logistic regression
can also be extended to cases where the dependent
variable can take more than two values, known as
multinomial or polytomous (Aldrich and Nelson,
1984; Menard, 1995; Tabachnick and Fidell, 1996;
Kleinbaum and Klein, 2002; Preisler and Westerling,
2007; Prasad et al., 2010). The logistic regression is
more powerful than other linear regression models,
and it makes no assumption on the probability distri-
bution of the predictors. The probability distribution
in question needs not to be normally distributed,
linearly related or have an equal variance within each
group; these restrictions are needed in the traditional
linear regression applications. The relationships are
derived from the so-called logit-transformation by
the success probability of:

exp(by +byx, +b,x, +++-+b,x,)

P(x)= (1)

1+exp(by +bx, +byx, + +b,x,)

where x; (i = 1,2,...,n) is the predictor and b; (i =
0,1,2,...,n) is the coefficient of logistic regression.
Since logistic regression estimates the probability
of success over the probability of failure, the results
of the analysis could be put as odd ratios in the fol-
lowing expression:
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Fig. 1. The rainfall regions of Turkey according to Tiirkes and Tatli (2011). The stations used in this study are num-
bered on the map, and their identifier can be found in Table I. BLS: Black Sea; NWTR: northwest Turkey; SAEG-
WMED: southern Aegean and western Mediterranean; MED: Mediterranean; W-CCAN: west continental Central
Anatolia; E-CCAN: east continental Central Anatolia; CEAN-CSEAN: continental eastern and southeastern Anatolia.
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Table I. Meteorological stations of Turkey used in this study, arranged according to the sequence numbers of the map

in Figure 1.
Station name Longitude Latitude Station name Longitude Latitude Station name Longitude Latitude
(cast) (north) (east)  (north) (cast) (north)
Sinop 35.2 42.0 Adana 354 37.0 Karaman 33.2 37.2
Samsun 36.3 41.3  Antalya 31.6 37.1  Ulukisla 34.5 37.6
Trabzon 39.7 41.0  Mersin 34.6 36.8 Ilgin 31.9 38.3
Bolu 31.6 40.7  Silifke 33.9 36.4 Eskisehir 30.5 39.8
Giresun 38.4 40.9 Alanya 34.6 36.8 Ankara 329 40.0
Rize 40.5 41.0  Fethiye 29.1 36.6 Nigde 34.7 38.0
Zonguldak 31.8 41.5 Antakya 36.2 36.2 Kayseri 35.1 38.9
Sakarya 30.4 40.8  Iskenderun 36.2 36.6 Aksaray 34.1 38.4
Bursa 290.1 40.2  Manavgat 314 36.8 Yozgat 34.8 39.8
Edirne 26.6 41.7  Islahiye 36.6 37.0  Sebinkarahisar 38.4 40.3
Bilecik 30.0 40.2  Kahramanmaras 36.9 37.6  Corum 35.0 40.6
Goztepe 29.1 41.0 Elazig 39.3 38.7 Kastamonu 33.8 41.4
Kocaeli 29.9 40.8 Malatya 38.3 38.4 Merzifon 355 40.9
Tekirdag 27.3 40.9 Mus 41.5 38.7 Tokat 36.6 40.3
Kirklareli 27.2 41.7  Diyarbakir 40.2 37.9 Amasya 35.9 40.7
Corlu 27.8 41.2  Siirt 42.0 37.9 Afyon 30.5 38.8
Florya 28.8 41.0 Kilis 37.1 36.7 Kars 43.1 40.6
Sile 29.6 41.2  Gaziantep 37.4 37.1 Sarikamis 42.6 40.3
Luleburgaz 27.4 414  Sanliurfa 38.8 37.1 Van 433 38.5
Canakkale 26.7 40.1  Adiyaman 38.3 37.8 Ardahan 42.7 40.1
Bandirma 28.0 40.4  Mardin 40.7 37.3 Erzincan 39.5 39.8
Balikesir 27.9 39.7  Siverek 39.3 37.8 Agri 43.1 39.7
Akhisar 27.9 389  Cizre 42.2 37.3 Hinis 41.7 39.4
Aydin 27.8 37.9 Isparta 30.6 37.8 lgdir 44.1 39.9
Izmir 27.2 38.4  Burdur 30.3 37.7 Bayburt 40.2 40.3
Manisa 27.5 38.6  Kutahya 30.0 39.4  Gumushane 39.5 40.5
Mugla 28.4 37.2  Usak 29.4 38.7 Ordu 37.9 41.0
Bodrum 27.4 37.0  Sivrihisar 31.5 39.5 Dortyol 36.2 36.9
Simav 29.0 39.1  Sivas 37.0 39.9  Aksehir 314 38.4
Salihli 28.1 38.5  Polatli 322 39.6 Erzurum 41.2 40.0
Dikili 26.9 39.1 Konya 32.6 38.0 Tatvan 423 38.5
Edremit 27.0 39.6  Kirsehir 34.2 39.1 Hakkari 43.8 37.6
log it[ P( x)] = ln[odds] =In Lx)} to Tabachnick and Fidell (1996), and Kleinbaum and
1-P(x) (2) Klein (2002):

=by+b,x, +b,x, + - +bx,

The logistic regression is structurally similar to the
well-known multivariate linear regression, where the
logits act as predictors and the predictands are natural
logarithms of the success probabilities (i.e., the odds).

The coefficients are generally obtained by using
the weighted Newton-Raphson algorithm. This
method is attractive, because the response variables
can be naturally arranged as a sequence of binary
choices. For this reason, it is a very suitable approach
to categorize drought events. The application steps of
this method are briefly summarized below according

1. Choose initial estimates of the regression coef-
ficients, b= 0.

2. At each iteration step &, update the coefficients,
b, =bk—1+(XTVk—1X) 1XT (y_pk—l) 3)
where X and y are treated as large-scale predictors
and predictands (containing zeros and ones), and
Vi1 1s the weight matrix where the diagonal entries
pir(1-p1) represent the occurrence probability.
Step 2 is repeated until b, is close enough to b,.,. The
estimated asymptotic covariance matrix of the coef-
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ficients is given by (X" VX)'. The Newton-Raphson
algorithm can be extended to a higher dimensional
version (polytomous), and its parameters are illus-
trated with the vector of p,.; in Eq. 3. The method
is a multivariate regression model of the so-called
conditional multinomial logistic regression.

The predictors illustrated with the matrix X are
selected from the output of the simulation with the
CGCM2, which is used to produce ensemble climate
change projections using the [PCC’s older 1S92a
forcing scenarios, as well as the newer SRESA2
and SRESB2 scenarios (IPCC, 2000). Note that
the results of the CGCM2 are also used in the third
assessment report of the [IPCC (IPCC, 2001), and in
the Arctic climate impact assessment.

The suggested procedure is schematically given
in Figure 2. Its source code is developed in Fortran
95, and it accounts for the missing values in the data.
A test based on the index, namely the accuracy or
proportion of correct predictions (Murphy, 1996;
Livezey, 2003), was applied for measuring the per-
formance of the logistic models. This test is com-
monly used to evaluate the performance of weather
forecasting in meteorology.

The drought and wet classes of 12-month SPI
values are calculated from the observed precipita-
tion values as a first stage. The probability density
function (PDF) of precipitation values is the first
step to estimate SPI values (one may refer to Tlirkes
and Tatli [2009] for a discussion on SPIs and modi-
fied-SPIs). The gamma function approach is widely

cul Numerical integration of the fitted
Stage 1 1C23 cu attﬁdSPl __.] gamma probability density function

-mon s (Press et al. 1992); Employing

inverse-normal distribution
Stage 2 Classification of
SPI values
Stage 3 [Simple logistic regression |
Low SPIs (dry)(&NO - ---- p (x)>0.5 High SPlIs (wet)
| Polytomous logistic regression |

Normal (a4) Normal (1)

Moderately-dry (a5)
Severely-dry (a3z)
Extremely-dry (a4)

Moderately-dry (Ry)
Severely-dry (R3)
Extremely-dry (R4)

Stage 4

Fig. 2. Schematic description of the suggested downscaling
model based on polytomous logistic regression. Alpha and
beta vectors shown in parentheses are the coefficients of
the regression model in question.

used to estimate the PDF of precipitation values (e.g.,
Thom, 1966; McKee et al., 1993, 1995; Wilks, 1995;
Guttman, 1998, 1999). In this study the cumulative
distribution function (CDF) of the precipitation series
is estimated by the numerical integration of fitted
gamma PDF by the incomplete-gamma approach
(Press et al., 1992). Twelve-month SPI values are
used, but the suggested algorithm can be easily ap-
plied to other time slices of the SPI values, such as 1,
3, 6,..., -month, or more. The gamma PDF and CDF
can be written as follows:

(y/8) " exp(-y/5)
AU (a)

[y exp(-y/ B)dy
0

PDF:f(y)= ’y’a’ﬁ>0

“)
1

BT (@)

CDF = F(y) =

where y indicates the precipitation value, and « and
p are the shape parameter and the scale parameter of
the distribution, respectively. The quantity /() is the
gamma function defined by

I'a)= ft“'le"dt (5)

An improved method suggested by Bowman and
Shenton (1988) was applied for estimating the shape
parameter resulting from the use of an iterative sixth
order polynomial. The scale parameter is then calcu-
lated by dividing the long-term mean of precipitation
values by the shape parameter, f =3/ a.

At the second stage, SPI values are classified
according to Table II. At the third stage, the dichot-
omous classes of drought and wet conditions are
grouped into two classes, namely high and low SPIs
treated as binary values (ones and zeros) represented
by wet and dry classes in Figure 2. This stage involves

Table II. Classification of the standardized precipitation
index (SPI).

SPI values Drought class
>2 Extremely wet
1.5-1.99 Very wet
1-1.49 Moderately wet
—0.99-0.99 Near-normal
—1-1.49 Moderately dry
—1.5-1.99 Severely dry
<2 Extremely dry
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a simple logistic regression which classifies the oc-
currence probabilities of wet and dry cases.

Finally, the fourth stage involves a polytomous
logistic regression. In Figure 2, the vectors given in
the parentheses represented by alphas and betas indi-
cate the coefficients of the specific logistic regression.
The dependent variable can take four dichotomous
values numbered as (k =0, 1, 2, 3), representing the
drought classes as shown on the left and right sides of
Figure 2. To further clarify this step, assume we wish
to estimate the occurrence probability of a moderately
dry class. By applying the vector of coefficients, the
occurrence probabilities are calculated as:

(6)

where P,(x) represents the occurrence probability of
a moderately dry class (the subscript 2 indicates the
second drought class), and the vector x illustrates the
large-scale precipitation series simulated by CGCM?2
in surrounding grid points to compare with non-uni-
formly distributed station data.

After calculating the occurrence probabilities of
the entire dry classes by using Eq. 6, the drought
class of maximum probability is selected as the
downscaled-class for the specific station.

In order to measure the performance of the
suggested model, the index of forecast accuracy or
proportion of correct predictions (PC) was calculated
between the output of the downscaling model-based
control and the observed SPI classes for the period
1970-2000. For verifying multi-category forecasts,

the method starts with frequencies of the forecast
and observations in various bins, as given in Table
III. A perfect forecast system should have values
of non-zero elements only along the diagonal, and
values of 0 (zero) for all entries off the diagonal. The
off-diagonal elements give information about the
specific nature of the forecast errors (Murphy, 1996;
Livezey, 2003). The value of PC for the selected
station is calculated as:

I
PC:;ZI”

k=1,2,..7 (7

PCranges from 0 to 1. If it assumes a value, close
to 1, this indicates a high forecasting performance.

3. Discussion and results

The performance and results of the suggested
downscaling models are compared with SPI values
obtained from the observed precipitation series by
covering each of the dry and wet event classes for
the 12-month SPIs calculated over Turkey. The
performance of the suggested downscaling model
based on the values of PC is given in Figure 3. As
shown in this figure, seven drought classes are first
transformed into three major drought classes; for
example, “extremely wet, very wet and moderately
wet” drought classes are merged and renamed as
above normal. Likewise, “extremely dry, severely
dry and moderately dry” classes are merged, and
renamed as below normal. The spatial patterns of
the long-term (climatological) occurrence proba-
bilities are shown in Figure 4 and those extracted
from the downscaling model are given in Figures
5 through 7.

Table III. Contingency table of the multi-categories of SPI values. The frequencies are used to calculate the proportion
of correct (PC) prediction values as a criterion of performance for the suggested downscaling models.

Observed category
i, Extremely Severely = Moderately Normal Moderately Very Extremely Total
dry dry dry wet wet wet

Extremely dry ny, n, n3 Ny nys Ny n; n,,
%’J - Severely dry 1y Ny, Ny3 Ny s )6 Ny7 ny,
% ;50 Moderately dry ns, Ny, Ny Ny Nys Nsg Ny, n;
] Normal Ny Ny Ny3 Ny Nys Ny6 Ny Ny,
5 S Moderately wet ns, Ns, Ns3 Nsy Nss Nsg ns; ns
=

Very wet Ng, Ny Ng3 Ney Nes Ngg Ng; g,

Extremely wet ny n;, ngp Ny Nys Ny ny; n;

Total n, n, n; n, n;s ng n, n
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Fig. 3. Spatial distribution of the proportion of correct (PC) prediction values obtained by comparing the downscal-
ing-model of the IPCC control scenario and observations. For more information, please refer to the text.

The level of long-term probabilities of down-
scaled drought classes generally shows a zonal gra-
dient from the rainfall regimes of the Mediterranean
to the Black Sea basins. Maximum probabilities
of a dry class regime are found near the border of
Syria-Turkey, where the warmest and driest land of
Turkey is located (Tatli and Tiirkes, 2011). The results
of downscaled drought classes and their relationships
with the synoptic-climatological situations are dis-
cussed in the following sub-sections.

3.1 Extremely dry conditions and projections
According to the extremely dry conditions obtained
from the observed rainfall totals, the long-term (cli-
matological) probabilities display a zonal-pattern gra-
dient from the Mediterranean to the Black Sea basins.
Maximum probabilities are found in the warm and
dry southern parts of the continental Mediterranean
(CMED) rainfall regions, in which the areas of the
Turkish-Syrian border are located (Fig. 4a).
According to the logistic model constructed by
the predictors from the control climate simulations
(Fig. 5a), the probabilities of extremely dry conditions
will increase in approximately 10% of the cases.

These downscaling results for the Mediterranean
(MED) and CMED rainfall regions agree well with
the observations, as seen in Figure 4a. The probabil-
ities of extremely dry conditions obtained from the
observed values are around 1%, in spite of the results
of the logistic model based on the control scenario
indicate around 20% in the country’s sub-regions of
the western Black Sea basin (Fig. 5a). Additionally,
the results show that the probabilities do not change
sharply in the regions of the Marmara Transition
(MRT) and the Mediterranean Transition (MEDT).
The probability patterns of downscaling models
based on the [IPCC SRESS A2 and B2 (Figs. 6 and 7,
respectively) resemble each other. Furthermore, the
estimated probabilities of extremely dry conditions
in the Black Sea (BLS) region seem similar to the
probabilities obtained by the downscaling-model
based on the control simulations. However, the es-
timated probabilities of extremely dry conditions in
the MED and CMED regions are 10% higher than the
values obtained from the control simulation (Figs. 6a
and 7a). The estimated probabilities for the eastern
sub-regions of the BLS and northeastern Anatolia are
similar in magnitude and spatial distribution.
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Fig. 6. Spatial distribution of the long-term probabilities of SPIs of the downscaling model based on the IPCC SRES A2.
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3.2 Severely dry conditions and projections
Although the observed probabilities of severely dry
conditions are relatively low (about 2%), they in-
crease from the MED and CMED to the northern part
of the country. Furthermore, the probability values
reach 4% in the eastern BLS and northern Anatolia
sub-regions of the Anatolian Peninsula, even though
the probability values of extremely dry conditions are
low (Fig. 4b).

The logistic control model produces somewhat
different patterns of probabilities when compared to
observations, except for the MRT rainfall region (Fig.
5b). Conversely, results of the logistic model based on
the IPCC SRES A2 and B2 scenarios show patterns
similar to the observed probabilities obtained from
the severely dry scenario (Figs. 6b and 7b).

The probabilities of a severely dry scenario ob-
tained from the observations have a 2-4% interval,
with some exceptions as seen in the MED and CMED
rainfall regions (Fig. 4b), where the probabilities of
a severely dry scenario show a negative trend. The
results of the logistic model based on the [IPCC SRES
A2 have somewhat higher probabilities than those
obtained from the [IPCC SRES B2 (Figs. 6b and 7b).

3.3 Moderately dry conditions and projections

The probabilities of having 12-month SPI values
of moderately dry class increase in rainfall regions
MED and BLS, where the probabilities observed are
about 4-5% (Fig. 4c). The probabilities observed in
the western and eastern BLS sub-regions vary from
7 to 9%, respectively.

The results of the logistic model based on the
control scenario show that the pattern of higher
probabilities has detailed spatial features, though
some small probabilities are also observed (Fig. 5¢).
According to the logistic model with predictors from
the IPCC SRES A2 and B2 scenarios, the patterns
of probabilities of moderately dry conditions have a
positive trend (Figs. 6¢ and 7c).

3.4 Normal conditions and projections

The 12-month SPI values from observations in Tur-
key are mostly in the near normal class, since the
climatological probabilities are generally changing
from 60 to 70% (Fig. 4d). As a result, this class
could be referred to as reference class, which has a
probability of being observed at least in 60% of the
meteorological stations.

The probabilities of the logistic model based on
the control scenario are in the near normal class,
partially decreasing in the BLS basin. However,
the patterns show that probabilities increase in the
regions of the MRT and continental eastern Anatolia
(CEAN) (Fig. 5d), where the probabilities observed
are around 80% or more.

The results obtained from the logistic model based
on the [IPCC SRES A2 and B2 scenarios are signifi-
cantly similar, and related to the results obtained from
the control scenario (Figs. 6d and 7d). According to
the downscaling results, it can be expected that the
near normal class probability will increase about
10% as compared to its present values.

3.5 Moderately wet conditions and projections

In Figure 4e, the probabilities of moderately wet con-
ditions have a negative gradient from the sub-rainfall
regions of MED, MEDT and CMED to the BLS ba-
sin. Some of the minimum probabilities are observed
on the coasts of the BLS basin, whereas the maximum
values are only obtained in the CMED regions. The
sub-regions of western and eastern BLS and CEAN
are exceptions, since the logistic model based on the
control scenario simulates very small probabilities of
moderately wet conditions (Fig. 6¢). The maximum
probabilities are generally observed in the rainfall
regimes of the MED and CMED, whereas the prob-
abilities of the logistic model based on the control
scenario decrease here and increase in the eastern
BLS basin and north-eastern Anatolia.

The results of the logistic model based on the
IPCC SRES A2 and B2 show similarities with the
control scenario (Figs. 6e and 7e). These similarities
may be seen in the probability patterns of moderately
wet conditions, which decrease in the southern and
western regions of the country.

Accordingly, it can be expected that the proba-
bilities of moderately wet conditions will increase
in the BLS basin and in the northeastern continental
regions of the country. Furthermore, the maximum
probabilities of moderately wet conditions are found
in the eastern BLS basin for the logistic model based
on the IPCC SRES A2, and in northeastern Anatolia
for the model based on the [PCC SRES B2.

3.6 Very wet conditions and projections
The probabilities of the very wet class range from 3% in
the CEAN region to 4% in the Aegean, Mediterranean
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and Black Sea regions (Fig. 4f). The maximum
probabilities of very wet conditions are about 5% in
northeastern Anatolia. The probabilities are smaller
for the logistic model based on the control scenario
(Fig. 5f). The probabilities in the Black Sea basin,
middle-northern parts of the CCAN and northeastern
Anatolia are nearly 1% and close to 0% for the rest
of the country.

The results obtained from logistic models based
on the [PCC SRES A2 and B2 are consistent with
the control simulations, in which the probabilities
of very wet conditions are expected to be below 1%
in the majority of the country (Figs. 6f and 7f). Both
models show that the maximum probabilities are seen
in parts of the northern Thrace, and in the sub-regions
of the eastern and middle Black sea basin.

3.7 Extremely wet conditions and projections

The probabilities of extremely wet conditions from
observations are small in magnitude and vary from
0 to 2%. Maximum probabilities are evident over
some limited areas of the eastern Black Sea basin,
northeastern Anatolia and western Mediterranean
coasts (Fig. 4g). According to the results of the lo-
gistic model based on the control scenario, except in
the sub-regions of the western Black Sea basin, the
probabilities are very small (Fig. 5g). In addition, the
results of logistic models based on the IPCC SRES
A2 and B2 agree with the results of the logistic model
based on the control scenario, indicating that in the
future, probabilities of extremely wet conditions will
decrease in the entire country (Figs. 6g and 7g).

4. Conclusions

Climate change impacts on future weather and cli-
mate are traditionally evaluated by running general
circulation models in the various socio-economic
scenarios. However, simulations of the GCMs at
coarse grids may yield large uncertainties in climate
variables. For instance, changes in global climate
give rise to large uncertainties when determining
its impacts on regional precipitation regimes, such
as drought and wet conditions and their variability
(Tatli, 2014). Downscaling techniques can provide
an answer to these problems.

At country level, downscaling drought and wet
conditions is a very important challenge, especially in
management plans of water resources, energy, natural
disasters, agriculture and forestry. Drought conditions

often cause serious damage and negatively affect
various socio-economical activities. For example,
they can lead to decreased crop yields and reduced
fresh water resources.

Traditionally, downscaled precipitation is used
to estimate the SPI. However, it is easier to down-
scale the drought classes than precipitation itself. In
addition, one may employ much more sophisticated
downscaling processes for selecting the appropriate
predictors (e.g., Tatli ef al., 2004; Pryor et al., 2005;
Tatli, 2007, 2013).

Since the downscaling model based on logistic
regression suggested in this study uses the large-
scale predictors directly from the GCMs, it should
be regarded as model output statistics.

In this study, the risks of drought and extreme
wet conditions under climate change scenarios are
assessed by means of statistical downscaling. Ac-
cording to the logistic models applied, the results are
more sensitive to the predictors obtained from large-
scale GCMs, while boundary conditions coming from
these are sensitive, as in the dynamical-downscaling
procedure. The applied logistic models produce
satisfactory statistical results when compared with
observations. The probabilistic patterns of the results
are statistically acceptable, since they capture the
main features of the local-scale climate. Since the
main goal of downscaling is to determine the effects
of large-scale climatic changes on the local-scale
variables, the proposed model based on logistic re-
gression produces acceptable statistical results.

Additionally, the results reveal that the down-
scaled-probabilities of very wet and extremely wet
conditions will decrease in the future for almost all
three scenarios. However, there are some exceptions.
In the future, the probabilities of near-normal con-
ditions will decrease in the BLS basin and relatively
increase in rainfall regions of the MRT and CEAN.
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