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RESUMEN

El objetivo de este estudio es capitalizar el detalle espacial del Landsat y la regularidad temporal de las
adquisiciones de MODIS utilizando una aproximacion de fusion (Spatial and Temporal Adaptive Reflec-
tance Fusion Model, STARFM). Especificamente, se pronosticé la reflectancia de superficie de 30 m del
Landsat-7 Enhanced Thematic mapper plus (ETM+) para un periodo de ocho afios (2002-2009) como el
producto de la reflectancia observada de superficic (MOD09Q1) ETM+ y MODIS sobre los datos ETM+
observados y pronosticados. El analisis de pixeles de los datos ETM+ observados de las estaciones de cultivo
de invierno y verano mostr6 que el método de prediccion fue mas preciso para el infrarrojo cercano (NIR,
por sus siglas en inglés) (media r* = 0.87, p < 0.01) en comparacion con la banda del rojo ( media r* = 0.65,
p < 0.01). Se calcul6 el indice de vegetacion en diferencias normalizadas (NDVI, por sus siglas en inglés)
de la reflectancia Landsat observada y pronosticada. Se compard la diferencia entre el NDVI de los datos
ETM-+ observados y pronosticados (prediccion residual) y los residuales temporales de los datos Landsat y
MODIS en dos fechas diferentes. Se encontr6 que que los residuales pronosticados para el NDVI (valor de la
media espacial 0.0085) fueron significativamente menores que los residuales temporales (valor de la media
espacial para MODIS 0.056 y 0.051 para ETM+ observados) lo que implica que el método de prediccion fue
mejor que la sustitucion temporal de pixeles. Al investigar la tendencia de los valores sintéticos ETM+ del
NDVI durante una estacion de crecimiento se descubrid que los patrones fenoldgicos son bien capturados.
La comparacion directa entre los valores del NDVI obtenidos de MODIS y de imagenes sintéticas ETM+
muestra buena consistencia de la dinamica temporal pero también un error sistematico que puede ser leido
como un sesgo (sobre estimacion del NDVI MODIS). También se estudio la relacion entre el NDVI ETM+
sintético y los datos de precipitacion observada y de evaporacion y se observo que la precipitacion mensual
total y la evaporacion mensual del mes precedente tiene coeficientes de correlacion mayores ( 1* = 0.56 y 1*
=0.59) que la media mensual del NDVI ETM+ sintética.

ABSTRACT

The aim of this study is to capitalize on the spatial detail of Landsat and the temporal regularity of MODIS
acquisitions using a fusion approach (Spatial and Temporal Adaptive Reflectance Fusion Model, STARFM).
Specifically, the 30 m Landsat-7 ETM+ (Enhanced Thematic Mapper plus) surface reflectance was predicted
for a period of eight years (2002-2009) as the product of observed ETM+ and MODIS surface reflectance
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(MODO09Q1) on the predicted and observed ETM+ dates. A pixel based analysis for observed ETM+ dates
covering winter and summer crop seasons showed that the prediction method was more accurate for NIR
(mean r* = 0.87, p < 0.01) compared to red band (mean r* = 0.65; p < 0.01). The NDVI was computed from
observed Landsat and predicted surface reflectance. The difference between NDVI from predicted and ob-
served ETM+ data (prediction residual) was compared with the temporal residuals of NDVI from observed
Landsat and MODIS data at two different dates. The prediction residuals for NDVI (spatial mean value of
0.0085) were found to be significantly lower than the temporal residuals (spatial mean value of 0.056 for
MODIS and 0.051 for observed ETM+) implying that the prediction method was better than temporal pixel
substitution. Investigating the trend in synthetic ETM+ NDVI values over a growing season revealed that
phenological patterns were well captured. A direct comparison between the NDVI values obtained from
MODIS and synthetic ETM+ images has shown a good consistency of the temporal dynamics but a systematic
error that can be read as bias (MODIS NDVI over estimation). The relationship between synthetic ETM+
NDVI with observed precipitation and evaporation data was also studied and it was observed that monthly
total precipitation and monthly evaporation of the preceding month have higher correlation coefficients (r*
=0.56 and r* = 0.59) with mean monthly synthetic ETM+ NDVIL.
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1. Introduction

Accurate and timely information on the location and area of major crop types has significant
economic, food, policy, and environmental implications. While all dimensions of remotely sensed
data are relevant, for practical purposes it is the temporal information that has been most useful
for monitoring of major crop types with remote sensing (Smith and Ramey, 1982; Badhwar,
1984; Hall and Badhwar, 1987; Price et al., 1997, Wardlow et al., 2007). At any point during
the growing season, crops are at different stages of maturity, and these stages are manifested as
differential levels of spectral reflectance in remotely sensed signals, thereby building a crop-specific
temporal record. Hence, by monitoring spectral indices that are sensitive to vegetation cover over
time, it is possible to distinguish crops and other land-cover types. Despite the availability of
long term satellite observations, temporal monitoring of crop types and crop health has not been
widely operational for crop acreage assessment. Two reasons contribute to this absence. First, the
spatial detail comes at the cost of reduced temporal availability: due to predetermined acquisition
strategies and obstructions by clouds, only a few medium or high spatial resolution images are
usually available during critical growing periods. Even if the necessary image data were available,
the increased number of datasets makes the cost prohibitive for operational applications. Second,
lower spatial resolution data such as Moderate Resolution Imaging Spectroradiometer (MODIS)
provide extensive coverage at continental and global scales, but lack the ability to reveal specific
details on the fields of interest. Thus many of the pixels generated by coarse resolution sensors are
not characteristic of any one crop but relate to a mixture.

The potential solution to provide more frequent high resolution surface observations is to fuse
Landsat observations with data from other remote sensing systems, such as MODIS. The MODIS
instrument offers new possibilities for large area crop mapping by providing a near-daily global
coverage of science-quality, intermediate resolution (250 m) data since February 2000 at no cost
to the end user (Justice and Townshend, 2002). The Terra platform crosses the equator at about
10:30 A.M. local solar time, roughly 30 min later than Landsat-7 ETM+. Their orbital parameters
are equal, and as such the viewing (near-nadir) and solar geometries are close to those of the
corresponding Landsat acquisition. The Terra/Aqua MODIS provides frequent coarse-resolution
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observations, revisiting the globe once to twice per day. The MODIS observations include 250-m
spatial resolution for red (band 1) and near-infrared (NIR) (band 2) wavebands and 500-m spatial
resolution for other five MODIS land bands (band 3-7). The MODIS land bands have corresponding
bandwidths to the Landsat ETM+ sensor except their bandwidths are narrower than ETM+.

Landsat fusion is not straightforward however because the radiometric consistency of Landsat data
may change spatially and temporally, due to atmospheric and phenological variations, differences in
illumination and observation angles, cloud and shadow contamination, and sensor calibration changes
(Coppin et al., 2004; Song and Woodcock, 2003). Many studies have been carried out on fusion of two
different satellite data (Carper et al., 1990; Shettigara, 1992; Acerbi et al., 2006). The recent fusion
studies based on Landsat and MODIS data of 500 m 16-day MODIS have been carried out to monitor
forest cover on a 8-day basis (Roy et al., 2008; Hansen et al., 2008; Hilker et al., 2009). The current
Landsat and Terra satellites are in the same polar orbit, with Landsat ETM+ observations occurring
approximately 15 min before MODIS Terra nadir observations. Recognizing the complementary
aspects of these systems, Gao et al. (2006) developed an empirical fusion technique, the spatial and
temporal adaptive reflectance fusion model (STARFM), to combine 30 m Landsat ETM+ data with
daily 500 m MODIS reflectance data. STARFM predicts changes in reflectance at Landsat’s spatial
and spectral resolution using high temporal frequency observations from MODIS. STARFM predicts
reflectance at up to daily time steps, depending on the availability of MODIS data.

The objective of this study was to investigate the suitability of the prediction algorithm for
generating synthetic (predicted) ETM+ surface reflectance for near-infrared (NIR) and red bands
and derivation of NDVI using these synthetic surface reflectances. The assessment of the quality
of the synthetic ETM+ reflectance by comparing these predictions with surface reflectance values
from observed ETM+ images acquired through out two growing seasons over a period of eight
years (2002-2009). To generate the NDVI time series from synthetic ETM+ data for the assessment
of seasonal changes (i.e. changes due to vegetation green-up and leaf senescence) in vegetation
cover and vegetation status over the study site, for which the potential of acquiring frequent higher
spatial resolution data (and therefore the potential for mapping of vegetation dynamics) is otherwise
low. Finally, the relationship between NDVI from synthetic ETM+ data with precipitation and
evaporation for its potential use in hydrological applications are investigated.

2. Methods
2.1 Study area

The study area is Mawana subdivision of Meerut district of Uttar Pradesh state depicted by the red
polygon shown in Figure 1, covering an area of about 1250 km®. The land cover is predominantly
cropland with scattered trees and bushes. This area is about 75 km from the national capital Delhi.
The study area was chosen mainly because of three important factors (1) The identified location
represents the agroclimatic conditions of a large part of northern India, where sugarcane occupies
around 2 million ha and rice-wheat is grown in about 10 million ha. This area comes under Indo-
Gangetic plains, where applications of organic matters in soil have gone down drastically resulting
in decline of crop productivity, (2) The availability of continuous satellite data as the study site
lies at the middle of tiles where Landsat-7 ETM+ has no missing lines due to SLC off, (3) The
availability of continuous observed meteorological parameters like temperature, rainfall, evaporation
and wind over a period of 15 years (1995-2009) over the study site.
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Fig. 1. Map of the study area. The study site encompasses a Landsat scene
(185 x 185 km?) of 15 September 2009 as R (red), G (NIR), B (green)
image near Delhi, India.

Figure 2a shows the RGB with R (red), G (NIR), and B (green) bands of Landsat-7 ETM+ image
of 15 September 2009 to have an idea about the land cover type of study site. There are basically
two types of land cover found in the RGB (Fig. 2a), namely crop and non crop land cover types.
The pink color shows non cropland, the Ganges river in the eastern part of region and villages in the
image while the green colour shows the crop land cover. The maximum temperature in the region is
about 45 °C in summer while minimum is about 5 °C in winter. The region receives approximately
950 mm of rainfall during the year. Out of that, about 90% of the rain occurs in the monsoon
months i.e. July to middle of September (Fig. 2b). The average depth of the water table is 6.0 m
in the study area. The soil characteristics vary in the study area from sandy loam in the western
part of the area to highly clay loam in the eastern part of the area in Khadar of the river Ganges.
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Fig. 2. (a) Shows RGB image as R (red), G (NIR), B (green) of 14 February

2010 for land cover types; (b) shows the annual variation of rainfall over
the study site from 2002-2009.

2.2 Satellite data

Two pairs of contemporary images, acquired by the sensors Terra-MODIS and Landsat-7 ETM+,
respectively, were used in the present study. The eight days MODIS composites (MOD09Q1) of
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surface reflectances (NIR and red) with a spatial resolution of 250 m for eight years (2002-2009)
were obtained from the EOS data gateway of NASA’s Goddard Space Flight Center (http://redhook.
gsfc.nasa.gov). Landsat-7 ETM+ orthorectified images (path 146, row 040) were acquired through
the USGS GLOVIS portal (http://glovis.usgs.gov/) for the same period. The details of Landsat-7
ETM+ and corresponding MODIS tiles used in this study are given in Table .

Table L. The details of Landsat-7 ETM+ and corresponding MODIS tile used for this study.

S.No. Landsat-7 ETM+ (path = 140,row = 040) MODIS (tile = h24v06)
1 20 March 2002 22 March 2002
2 28 September 2002 29 September 2002
3 7 March 2003 6 March 2002
4 1 October 2003 30 September 2003
5 25 March 2004 22 March 2004
6 1 September 2004 2 September 2004
7 12 March 2005 14 March 2005
8 6 October 2005 8 October 2005
9 27 February 2006 26 February 2006
10 23 September 2006 22 September 2006
11 2 March 2007 6 March 2007
12 12 October 2007 16 October 2007
13 4 March 2008 6 March 2008
14 28 September 2008 29 September 2008
15 7 March 2009 6 March 2009
16 15 September 2009 14 September 2009

Precise registration and orthorectification of remote sensing images are the basic processes
for quantitative remote sensing applications, especially for multi-temporal image analysis. Image
registration is often very time-consuming, sometimes taking months to collect an adequate number of
ground control points (GCPs). Many methods have been and continue to be developed for automatic
or semi-automatic image registration (Hanaizumi and Fujimura, 1993; Dare and Dowman, 2000;
Zhang and Zhang, 2001; Ali and Clausi, 2002; Bentoutou et al., 2005). These methods describe
algorithms and functional forms rather than the use of particular software. Therefore, implementation
of these methods will be difficult to end users. This work took advantage of a free application
called ITPFIND (Kennedy and Cohen, 2003) that automatically finds image reference points for
image rectification, in order to produce accurately registered images in a relatively short amount
of time operationalized in IDL (ITT Visual Information Solutions, Boulder CO). Subsequently,
image to image registration was carried out from these points using the ENVI software package.

Image registration is the process of making an image conform to another image and involves
georeferencing if the reference image is already rectified to a particular map projection. Thus
image to image registration is usually used for time series data like multi-temporal images over
the same region in order to place the same coordinate system to disparate images. The Landsat-7
ETM+ image was manually corrected using ground control points (GCPs) and thereafter it was
considered as reference image for image to image registration of all the remaining images as given
in Table I. For example, Figure 3(a and b) shows the Landsat-7 ETM+ image on 2 March 2007
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Fig. 3(a) Coregistration of Landsat-7 ETM+ NIR using 2 March 2007 as
reference image and (b) 12 October 2007 as input image.

as reference image and 12 October 2007 as input image. Table II provides the predicted x, ef al.
coordinates for the selected warp, the x and et al. error, and the Root Mean Square (RMS) error
after the selection of at least four GCPs from GCP list. However, it is better to select sufficient
number of GCPs to conduct a first-degree polynomial warp and calculate the total error and the
RMS error for each point. The RMS error is minimized by refining the positions of the pixels
with the largest errors or by removing them. If only few GCPs are available, place them near the
image corners or widely scatter them throughout the image (Fig. 3). For rectification, first order
polynomial transformation equations were derived and a bilinear interpolation resampling method
was used to determine the pixel values of the new rectified image with a size of 30 by 30 m. The
total RMS error of the registered images was 0.68 pixel, which was quite low to accept the RMS
error limit required for the fusion of satellite data.

Table II. Statistical analysis of coregistration of Landsat-7 ETM+ NIR using 2 March 2007 as reference
image and 12 October 2007 as input image.

GCPs Reference Reference Input Input Predict Predict  Error  Error RMS
(x) (et al) (x) (et al.) (x) (etal) x) (et al)

1 3910 2286 4050 2316 4049.8 2316.28 0.2 0.28 0.35
2 4187 2293 4327 2323 4326.56  2323.61 -0.44 0.61 0.75
3 4434 2343 4574 2373 4573.87  2373.19 -0.13 0.19 0.23
4 3791 2562 3931 2592 3931.06  2591.91 0.06 —0.09 0.11
5 4150 2519 4290 2549 4290.98  2547.63 098 -1.37 1.68
6 3782 2800 3922 2830 392212 2829.83 0.12  -0.17 0.21
7 3723 3027 3863 3057 3862.59  3057.57 -0.41 0.57 0.7

8 3773 3217 3913 3247 3913.16  3246.77 0.16 -0.23 0.28
9 4427 3301 4577 3317 4576.86  3317.2  —0.14 0.2 0.25

Total RMS error : 0.6884

The radiometric and atmospheric corrections were applied to Landsat-7 ETM+ scenes. The
equations and parameters to convert calibrated Digital Numbers (DNs) to physical units, such as
at-sensor radiance or TOA reflectance utilized in this study are from the previous studies (Chander
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and Markham, 2003; Chander et al., 2007; Markham et al., 2004). Images were atmospherically
corrected using the Quick Atmospheric Correction (QUAC) module (Bernstein et al., 2005) of
environment for visualizing images (ENVI) processing package. Following STARFM algorithm
input requirements, the MODIS data were reprojected to the geographical projection using the
MODIS reprojection tool (Kalvelage and Willems, 2005), clipped to the extent of the available
Landsat imagery, and resampled to a 30 m spatial resolution with nearest-neighbor resampling to
maintain the MODIS pixel values and 30 m output pixel dimensions to reduce nearest-neighbor
resampling pixel shifts (i.e., position errors) (Roy and Dikshit, 1994). These datasets were forced
to assume the same size in order to make the results comparable. The basic features of the two
sets of data are given in Table III.

Table III. Landsat ETM+ bands and the corresponding MODIS bands used in

this study.
Terra- MODIS Landsat-7 ETM+
Bandwidth Specifications
(nm) Band 1: 620-670 Band 3: 630-690
Band 2: 841-876 Band 4: 780-900
Spatial resolution (m) 250 30
Radiometric resolution (bits) 12 bits 8 bits
Data frequency Daily 16 Days

3. Results
3.1 Evaluation of synthetic ETM+ imagery

The spatial and temporal adaptive reflectance fusion model (STARFM) developed by Gao ef al.
(20006) predicts pixel values based upon a spatially weighted difference computed between the ETM+
and the MODIS scenes acquired at date T1, and the ETM+ T1-scene and one or more MODIS scenes
of prediction day (T2), respectively. The input pairing (T1) criteria for the prediction of synthetic
ETM+ (T2) was based on least amount of cloud cover (almost 0%) and minimal temporal difference
in order to reduce the likelihood for changes in land cover resulting from harvesting or phenological
changes. The input pairs (T1) used in this study are given in Table I. The study area comprises winter
and summer crops. Generally, late February or early March is the peak time (middle of season)
for winter and September or October are peak time for summer crops. The algorithm yielded 46
(eight days composites) high spatial resolution, synthetic ETM+ images for the growing seasons
(December to April for winter crop and May to December for summer crop) using an ETM+, for
example MODIS scene acquired on 4 March 2008 and 28 September 2008 as the T1 images, and
eight day MODIS composites between January to December 2008 as the T2 images for prediction
(Table I). Also, the validation was not done for June, July and August months because of non
availability of cloud free observed ETM+ images and also excluding input image pairs (Table I).

Figures 4(a-f) and 5(a-f) show a per-pixel comparison between observed and predicted ETM+
NIR, and red surface reflectance for the winter and summer crops. The first row shows the scatter
plots for NIR band and second row for red band. The relationship between observed and predicted
pixel values closely followed the 1-to-1 line for the NIR compared to that of red reflectance
(Figs. 4(a-f) and 5(a-f)). Some deviations from this 1-to-1 line, however, were found for the NIR
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Fig. 4. Per-pixel comparison between observed and predicted ETM+ reflectance for three different observed
ETM-+ dates for winter crops. The first row represents the reflectance values for the NIR and second row
for red band, respectively.

towards the end of the summer crops period (Fig. 5(a)) and during the month of December when
harvesting of sugarcane progresses (Fig. 5(c)). The harvesting of summer crops (sugarcane) and
simultaneously sowing of winter crops (wheat) during the month of December creates a complex
mixture of land cover type, as a result the scatter plots (Figs. 5a and 5c) are bit noisy and also the
coefficients of determination are also relatively low (r* = 0.87 and r* = 0.82). The ability of 30 m
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Fig. 5. Same as Figure 4, but for summer crops.
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resolution synthetic ETM+ images for the predictability of changes depends upon the capacity
of MODIS to detect these changes, particularly when they occur in vegetation structure or stand
composition or at sub-pixel ranges (Gao et al., 2006). Complex mixtures of land cover type are a
challenge for all methods of data fusion. Therefore, it will be difficult to identify or spatially define
individual change events as it is not possible to depict changes occurring in the sub-MODIS pixel
range. As a result, the algorithm in its current form seems less suited for the prediction of changes
in vegetation structure (such as originating from clear cut harvesting or thinning) or changes in
land cover. Changes will also not be detected by STARFM when two contradicting changes occur
within a coarse resolution pixel simultaneously and compensate for each other (Gao et al., 2006).

The validation of synthetic ETM+ with observed ETM+ has been carried out for the images
which are not used as input pairs (T1) in this study as given in Table 1. Therefore, it may be stated
that regression analysis was carried out on two independent set of observations. The validation
was carried out for winter and summer crops for all the eight years and statistical results are given
in Table IV. The first column in each sub-table shows the coefficient of determination, the second
column shows the intercept and the third column shows the slope of the relationship between
observed and predicted. A two-sided t-test was used to determine whether there is a statistically
significant difference between observed and predicted surface reflectance. Table IV shows the
reasonably consistency in the results for all the eight years (2002-2009) with different dates of
input pairs from year to year. The highest correlations between observed and predicted pixel values
were found for the NIR band (0.76 < r* < 0.92, p < 0.01), while the red band yielded slightly
weaker relationships (0.64 <1* < 0.69, p< 0.01) (Table IV). In most of the cases the intercepts of
the relationship between observed and predicted images were greater than zero (Table IV) which
can be interpreted as a noise signal likely due to atmospheric and BRDF effects. These findings
are also confirmed by previous studies (Gao et al., 2006; Hilker et al, 2009).

Table I'V. Regression analysis of the observed versus predicted ETM+ images, whose prediction
date was closest to the observed scenes.

NIR red
Observed ETM+ scenes
r a b r a b
31 January 2002 0.895 0.007 0.763 0.653 0.014 0.827
14 October 2002 0.918 0.058 0.931 0.665 0.037 0.784
8 April 2003 0.879 0.071 0.952 0.647 -0.008 0.849
2 November 2003 0.914 0.009 0.895 0.659 0.027 0.763
10 April 2004 0.873 -0.006 0.927 0.653 0.019 0.838
19 October 2004 0.853 0.083 0914 0.662  —0.037 0.746
13 April 2005 0.879 0.042 0.883 0.651 0.006 0.682
7 November 2005 0.897 0.017 0.987 0.664 0.032 0.795
31 March 2006 0.916 0.008 0.912 0.648 0.019 0.743
9 October 2006 0.852 0.093 0.947 0.659 -0.041 0.689
3 April 2007 0.836 0.097 0.885 0.643 0.008 0.796
13 November 2007 0.871 0.069 0.918 0.661 -0.028 0.829
24 April 2008 0.765 -0.008 0.994 0.636 0.036 0.876
14 October 2008 0.877 0.025 0.881 0.698 0.017 0.646
24 April 2009 0.882 0.005 0917 0.657 0.019 0.835

17 October 2009 0.913 0.041 0.935 0.669 0.037 0.738
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The spatio-temporal variation of the NDVI is illustrated in Figure 6 over the study area. The
absolute difference of NDVI values (temporal residuals) from MODIS data on 28 September 2008
(Part a) and 15 October 2008 (Fig. 6b), and observed ETM+ data on 28 September 2008 (Part
6d) and 14 October 2008 (Part 6e) were computed and shown in Figure 6 (c and f), respectively.
Similarly, the prediction residuals were computed from the absolute difference of NDVI values
from synthetic ETM+ data on 15 October 2008 and observed ETM+ data on 14 October 2008
(Fig. 6(i)). Close examination of the NDVI derived from predicted ETM+ data reveals a faint
blocky pattern that corresponds spatially to the locations of the resampled 250 m MODIS pixel

NDVI (MODIS)(28/092008)  NDVI (MODIS)(15/1022008)  Temporal Residual

(@)

NDVI (Observed ETM+) NDVI (Observed ETM+)

Temporal Residual
28/09/2008) 14/10/2008)

o

Prediction Residual

. >0.090
0.16-0.030
NDVI from observed ETM+ on 28 September and 14 October 2008, (f) is the temporal residual (absolute

(i)
4 ] 0.061-0.090
I 0.00-0.015
value of (d-e)), (g) and ef al. are NDVI from predicted ETM+ on 15 October 2008 and observed ETM+ on

0.046-0.060
0.031-0.045
Fig. 6. Illustrating spatio-temporal variation of NDVI; (a) and (b) are NDVI from MODIS(MOD09Q1) on
28 September and 14 October 2008, (c) is the temporal residual (absolute value of (a-b)), (d) and (e) are
14 October 2008, (i) is the prediction residual (absolute value of (g-h)). Pat a, b, d, e, g and h are shown
with the same contrast stretch.
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dimensions. This pattern is most evident across some of the fields (Fig. 6g). This is due to the
fact that the dynamics of surface reflectance is different between one field and its neighbor (e.g.,
due to harvesting in one field and not in an adjacent field), underlying the fact that the method is
less likely to be valid where the Landsat reflectance heterogeneity at the sub-MODIS pixel scale
changes temporally. The NDVI from observed ETM+ data for 28 September (Fig. 6d) is higher
than the 14 October 2008 (Fig. 6¢) with many fields harvested by the later acquisition date. Despite
the evident land cover change complexity, the NDVI from predicted ETM+ data on 15 October
2008 captures many of the temporal changes (Fig. 6g). In general, the prediction residuals (spatial
mean value of NDVI was 0.0085) was considerably lower than the temporal residuals (spatial
mean value of NDVI from MODIS was 0.056 and predicted Landsat was 0.051) that correspond
to 25 and 9% of mean observed values of NDVI (0.502 from observed Landsat and 0.527 from
MODIS) on 14 and 15 October 2008, implying that the prediction method was on an average better
than temporal pixel substitution. However, prediction residuals were also found to be higher than
the temporal residuals at a few locations. The higher prediction residuals may be due to regions of
textural change in addition to misregistration and resampling impacts that are greatest in regions of
high spatial variation (Roy, 2000).

3.2 Evaluation of NDVI time series

The majority of ETM+ images used for the prediction of NIR and red surface reflectances were close
to 100% cloud free. However, the NDVI calculated using predicted ETM+ NIR and red surface
reflectances still include some contaminated pixels. There are many complications, limitations and
causes of error associated with satellite data, including sensor resolution and calibration (Vermote
and Kaufmann, 1995), digital quantization errors (Viovy et al., 1992), ground and atmospheric
conditions (Tanre et al., 1992), and orbital and sensor degradation (Kaufmann et a/., 2000). NDVI
data sets are generally well-documented, quality-controlled data sources that have been pre-
processed to reduce many of these problems (James and Kallmi, 1994; Smith ez al., 1997; Tucker
et al., 2005). However, some noise is still present in the downloadable data sets and, therefore,
NDVI time-series need to be smoothed before being used. Therefore, Savitzky-Golay (1964)
filtering technique was used in order to remove the noise from NDVI time series. This technique
was applied to smooth every pixel’s time series profile for eight year (2002-2009) period.

The scatter plots of synthetic ETM+ with observed ETM+ NDVI and the MODIS NDVI data
from the nearest composite period are shown in Figures 7a and b, respectively. The observed
ETM+ NDVI values close to 100% cloud free thus provide a reference value for the comparison
of synthetic ETM+ and MODIS NDVI values. The total number observed ETM+ scenes used
for this study was 58 over a period of eight years (2002-2009). The regression analysis between
observed and synthetic ETM+ NDVI (Fig. 7a) carried out at 30 m spatial resolution while for
MODIS NDVI (Fig. 7(b)), the synthetic ETM+ NDVI was resampled to 250 m spatial resolution.
The mean value of closest synthetic ETM+ NDVI over the study area corresponding to observed
ETM+ NDVI was used for the regression analysis. A strong linear relation exists between MODIS,
observed and synthetic ETM+ NDVI (Fig. 7(a) and 7(b)) but with different regression coefficients,
because of MODIS tendency to overestimate NDVI (Hwang et al., 2008). A good agreement (r*
=0.86, p <0.01) was observed between observed and synthetic ETM+ NDVI (Fig. 6a) compared
to MODIS and synthetic ETM+ NDVI (r* = 0.63, p < 0.01). The rms errors from predicted and
observed Landsat data derived NDVI were found to be 0.042 to 0.046 over a period of eight years
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(2002-2009). The later result showed that a significant amount of information is lost in case of
MODIS medium spatial resolution compared to the ETM+ NDVIL.

The results of the intercomparisons of the NDVI time series from synthetic ETM+ and MODIS
are presented in Figure 7(c) and 7(d), respectively. The synthetic ETM+ NDVI time series was
generated at 30 m spatial resolution by taking the mean of synthetic ETM+ NDVI (Fig. 6(c)) over
study area for 46 weeks (8-days composites) for eight years period (2002-2009). Similarly for
MODIS NDVI (Fig. 7(d)) time series also but for 250 m spatial resolution. The first maximum
corresponds to winter crops (wheat) while the second one corresponds to summer crops (sugarcane)
in each year. All the curves of NDVI for the years from 2002 to 2009 show distinctive seasonal
dynamics. It may be observed that vegetation green-up and leaf-down at the beginning and at the
end of the vegetation period were well captured by the synthetic ETM+ NDVI (Fig. 7 (c)) and
MODIS NDVI (Fig. 7 (d)). The NDVI time series by and large represent crops, since only a small
area of scattered trees and bushes are present over the study site. The NDVI values are maximum
around week 8 (winter crops) followed by a second peak around week 38 (summer crops). The
mean synthetic ETM+ NDVI value of first maximum (0.52) is found to be smaller than the second
maximum (0.62). These peaks represent winter crops of low productivity and summer crops of
high productivity. Therefore, synthetic ETM+ NDVI suggests that data may potentially be used to
quantify seasonal changes in reflectance induced by physiological changes in vegetation, the rate
of increase and decrease of the NDVI, the dates of the beginning, end and peak(s) of the growing
season, the length of the growing season, the timing of the annual maximum NDVI and the NDVI
value at a fixed date (Drake, 1976; Tucker, 1979; Sellers, 1985) at fine spatial scales (Gao et al.,
2006). Similar patterns are observed in case of MODIS NDVI (Fig. 7(d)). However, there were
two major differences observed between these two data sets. First, the interannual variations
were found to be more distinct in case of synthetic ETM+ NDVI compared to MODIS. Second,
MODIS NDVI was overestimated, characterized by a moderate intercept with respect to synthetic
ETM+ NDVI. Earlier study (Hwang, 2008) also reported over estimation of MODIS NDVI in
comparison to ETM+ NDVI.

The vegetation dynamics and local climate are intrinsically linked and hence vegetation dynamics
could provide information about climatic events, such as drought conditions. The NDVI has been
used to improve our predictions and impact assessments of disturbances such as drought (Singh et
al., 2003), fire (Maselli et al., 2003), flood (Wang et al., 2003) and frost (Tait and Zheng, 2003).
Because of interannual and intra-annual variations in rainfall on the study area, the vegetation is
often exposed to water shortage during the growing season, periodically leading to severe droughts
(Susmitha, et al., 2009), food shortage and production deficiencies. NVDI in the monitoring of
drought or in the evaluation of dynamic fire risk rely on the sensitivity of the index to vegetation
dryness, a major predisposing factor for drought occurrence. An attempt has been made in this
study to investigate the capability of synthetic ETM+ NDVI for the analysis of two drought years
2002 and 2004 (Susmitha et al., 2009). The mean NDVI (mean of eight years) over the study site
is shown as a black line (Fig. 7(c) and 7(d)), which clearly separates the years of healthy and poor
vegetation conditions during the summer season. The maximum value of synthetic ETM+ NDVI
values (Fig. 7(c) observed during the year 2002 and 2004 were significantly lower (0.60 and 0.61
respectively) compared to mean NDVI value (0.66) and also with other years. Similar results were
also observed for MODIS NDVI (Fig. 7(d)), but with overestimation. The lower value of NDVI
for the year 2002 attributed to no rainfall during month of July (Susmitha et al., 2009). However,
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the year 2004 also suffered four short or long monsoon breaks, but these were intermittent and of
less duration compared to July 2002 (Susmitha ez al., 2009). Generally, the sowing time of summer
crops over this area starts from middle of June and therefore, July rainfall is very critical for the
growth of vegetation. Therefore, it may be stated that synthetic ETM+ NDVI could be useful for
the monitoring of climatic events such as drought. However, further work is required to quantify the
impact of synthetic ETM+ NDVI data on a larger scale.
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Fig. 7. Comparison of composited NDVI data to 22 Landsat ETM+ scenes. (a) Scatter
plot of observed Landsat ETM+ NDVI (x axis) versus sensor synthetic Landsat ETM+
NDVI (y axis) from the nearest maximum value composite to Landsat acquisition date.
(b) Scatter plot of synthetic Landsat ETM+ NDVI (x axis) versus MODIS NDVI (y
axis) from the nearest maximum value composite to Landsat acquisition date. (c) The
line plot show the eight days mean NDVI values over crop land cover type derived from
synthetic Landsat ETM+ NDVI. (d) Same as (c) for MODIS NDVI.

3.3 Synthetic ETM+ NDVI vs precipitation and evaporation

NDVI was shown to be sensitive to changes in vegetation conditions, since it is directly influenced
by the chlorophyll absorption of the sun radiation (Tucker ef al., 1985). Because the chlorophyll
status integrates the effects of numerous environmental factors, NDVI has been related to the
following components of the water balance equation for a wide range of spatial and temporal
scales: soil moisture (Choudhary and Golus, 1988; Farrar et al., 1994; Nicholson et al., 1996),
precipitation (Tucker et al., 1985; Choudhary and Tucker, 1987; Nicholson et al., 1990; Devenport
and Nicholson, 1993; Schultz and Halpert, 1993; Nicholson and Farrar, 1994; Grist et al., 1997) and
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evaporation (Running and Nemani, 1988; Kerr et al., 1989; Chiller et al., 1991; Gao et al., 1992;
Seevers and Ottmann, 1994; Nicholson et al., 1996). A comparable long-term study of NDVI versus
concurrent monthly evaporation has been presented by Nicholson ez al. (1996) who concluded that
with the growing aridity of the environment the NDVI versus evaporation relationship becomes
significantly weaker. However, it was concluded by Szilagyi et al. (1998), when a time-lag of one
month between evaporation with NDVI is taken into consideration, the relationship remains strong
even in a water limited environment.

The relationships between evaporation, precipitation and synthetic ETM+ NDVI as mentioned
carlier were revisited. The scatter plots between mean monthly synthetic ETM+ NDVI values
versus monthly total precipitation and monthly evaporation with no time-lag as shown in Figure
8aand b yielded a weak relationship (r*=0.41 and r* =0.33 respectively). The relationship improves
when the synthetic ETM+ NDVI values are plotted against precipitation and evaporation with a
time-lag of one month (Fig. 8(c) and 8(d)) with coefficients of determination as 0.59 and 0.56
respectively. Previous study (Di et al., 1994) also confirms these findings. These relationships
between synthetic ETM+ NDVI and evaporation are also in agreement with previous studies
(Nicholson et al., 1996 and Szilagyi et al., 1998). Therefore, synthetic ETM+ NDVI could be a
useful tool for estimating evaporation at regional scales for long-term hydrologic budgeting and
model validation by supplying reference values for the modeler against whom the model estimated
evaporation values can be regressed.
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4. Discussion

As currently only the SLC-off Landsat ETM+ and the aging Landsat-5 TM (Chander et al., 2007;
Helder and Ruggles, 2004) systems are acquiring data, and only a single successor Landsat Data
Continuity Mission (LDCM) sensor is scheduled for launch early in the next decade (Irons and
Masek, 2006), a potential solution to provide more frequent high resolution surface observations is
to fuse Landsat observations with data from other remote sensing systems. This study investigated
the capability of STARFM (Gao et al., 2006) over a tropical region (India) to predict seasonal
changes in winter and summer crops for a higher level of complexity due to small field sizes,
diversified cropping pattern and field-to-field variability in crop phenology and management
practices, which is different than its use in previous studies (Gao et al., 2006 and Hilker et al.,
2009). The prediction residuals (Fig. 61) were found to be considerably lower than the temporal
residuals (Fig. 6¢ and 6f), suggesting that the prediction method is on average better than temporal
pixel substitution. The higher correlations between observed and predicted pixel values for the NIR
and red band (Table IV) may suggest their use for the derivation of the product such as NDVI, LAI
at 30 m spatial resolution. The validation of synthetic 8-day ETM+ NIR reflectance with single
day observed ETM+ NIR showed a very good agreement (Figs. 4 and 5), implying the capability
of the prediction method. In the present study, MODIS 8-day composite images are used rather
than daily MODIS reflectance products, because they yielded largely cloud-free images and can
therefore help to predict changes in reflectance of vegetation over tropical area of the earth where
cloud cover prevents frequent cloud free observations. The use of MODIS composites rather than
single observations may, however, impact the average reflectance brightness for a given image
region, depending on the MODIS scenes used in the MOD09Q1 product and is therefore at the same
time also a limitation to the applied technique as the composition of data originating from multiple
viewing angles and the variation of vegetation within the eight-day production period which differs
from the Landsat acquisition date, also provides a possible source of error (Hilker et al., 2009).

NDVI is often used as a monitoring tool for the vegetation health and dynamics, enabling easy
temporal and spatial comparisons (Myneni et al., 1997). Benefits of this work include the successful
data fusion of ETM+ and MODIS data sets, enabling the use of the longer Landsat TM/ETM+ NDVI
time series for winter and summer seasons over a tropical area. Direct comparisons of synthetic
ETM+ NDVI with MODIS NDVI revealed several important distinctions and similarities. One
obvious difference was associated with image/map resolution. Synthetic ETM+ captured much
of the spatial complexity of land cover at the study site (Fig. 6(g)). In contrast, the relatively
coarse resolution of MODIS did not allow for that level of spatial detail (Fig. 3(f)). The greatest
difference was an overestimation by MODIS NDVI (Fig. 7(d)). This is because MODIS data have
significantly larger grain size (250 m), which can be expected to lower overall spatial variance
(Woodcock and Strahler, 1987; Cohen et al., 1990). Furthermore, at larger grain sizes, there is less
likelihood that class-specific relationships are practical. However, due to difference in spectral
bands, temporal compositing, spatial resolution and other sensor characteristics, there has never
been the expectation that NDVI values from these two sensors (synthetic ETM+ and MODIS)
here will match perfectly. Empirical techniques can be used to force agreement, yet there remains
a question of how well the resulting time series matches reality. Comparison provides evidence
that the time series do represent what is actually happening on the ground.

The previous studies (Szilagyi ef al., 1998; Szilagyi, 2000) also confirm the relationship of
synthetic ETM+ NDVI with hydrological parameters as shown in Figure 6. However, different
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authors drew differing conclusions about the relationship of NDVI to precipitation and evaporation.
For example, Seevers and Ottmann (1994) and Nicholson et al. (1996) pointed out that the NDVI-
evaporation relationship is strong mainly in humid environments. Szilagyi ef al. (1998) emphasized
that the correlation may not necessarily deteriorate with the growing aridity of the environment,
provided that a time-lag is considered between the two variables. One might argue that a lag between
evaporation and NDVI exists because, when precipitation is high in a month, the NDVI will be
high the following month, and conversely, since it takes some time for the vegetation to use it from
soil moisture storage and since soil moisture supports vegetation for some time during dry spells
before plants start to wilt. Szilagyi et al. (1998) showed that NDVI is more strongly related to
lagged evaporation than lagged precipitation. Also, NDVI had higher correlation with evaporation
than with precipitation for water-cycle averaged values (Szilagyi, 2000). This is so because plant
photosynthesis and transpiration are inseparable processes (Wiegand and Richardson, 1990). An
increase/decrease in photosynthetic activity and thus in evaporation results in an increase/decrease
of green biomass within a certain time lag. NDVI responds to any change in green biomass,
because NDVI is a measure of the total amount of photosynthetically active tissue (Wiegand and
Richardson, 1990) over a given area.

Algorithms like the one used in this study are important components of current research efforts
seeking to map high spatial resolution changes in vegetation cover and status with high temporal
density, over larger areas. Data blending approaches, such as STARFM can help in minimizing
the technical limitations and trade-offs associated with information needs that require data with
both high spatial and temporal resolutions. Applications such as monitoring seasonal changes in
vegetation biophysical and structural attributes over tropical areas can benefit from the synergies
of multiple data sources such as MODIS and Landsat ETM+. Advances in data blending can
also influence the design of new sensors, where the advantages of different spatial and temporal
resolutions may be fully realized in the creation of different sensors on different platforms, with
the complementary nature of these systems in a data blending approach, considered from the outset
of the design process. Tactical decision-making on land management can benefit from immediate
access to the synthetic data, especially over the heterogeneous areas of very small crop field. At
this stage, however, the synthetic ETM+ data should be considered only a general solution. Until
more detailed models that begin with synthetic ETM+ and add computations of species are ready,
and even of cultivar-specific developmental sequences, it will lack the accuracy desired for specific
crops and areas.

5. Conclusions

The STARFM algorithm has been successfully used in this study for complex mixture of agriculture
land over a tropical area to predict reflectance for NIR and red bands over a period of eight years
(2002-2009). The accuracy was found to be better for NIR (mean r*= 0.87, p < 0.01) compared to
red band (mean r* = 0.65; p < 0.01) for winter and summer crop seasons. The prediction method
maintained a high spatial level of detail in the predicted scenes, as the prediction residuals were
significantly lower than temporal residuals. It seems, however, less well suited to predict sudden
changes in land cover, such as induced by harvesting or sowing of crops. The synthetic ETM+
NDVI demonstrated the capability of mapping the seasonal and interannual variations in vegetation
at ETM+ spatial resolution and 8-day time intervals. The two drought years 2002 and 2004 were
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clearly brought out by synthetic ETM+ NDVI. The study of the relationship of synthetic ETM+
NDVI with precipitation and evaporation yielded that monthly total precipitation and monthly
evaporation of the preceding month have higher correlation coefficients (r* = 0.56 and r* = 0.59)
with mean monthly synthetic ETM + NDVI, which are also corroborated by previous studies.
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