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RESUMEN

Este trabajo contiene una investigación sobre el movimiento inercial en la esfera incluyendo todos los
términos de las fuerzas de Coriolis. El vector de velocidad tiene una componente zonal, una meridional y
una de altura. La dependencia del tiempo de estas componentes se calcula solucionando tres ecuaciones de
velocidad que contienen únicamente los términos de Coriolis. Entonces, a partir del vector de velocidad se
calcula el vector de posición de tres dimensiones. Los resultados dependen de la latitud de la posición
inicial. Para la mayoría de las posiciones iniciales es una buena aproximación considerar a la latitud como
constante, ya que los resultados muestran que las variaciones sur-norte son bastante pequeñas para valores
razonables del vector de velocidad que puede ser considerado como el viento a-geostrófico y por lo tanto
muy pequeño. Estas observaciones se consideran con detalle en el trabajo. Para cada caso se dan el vector de
velocidad inicial (uo, vo, wo) y la posición inicial (xo, yo, zo). Sin embargo, debido a la naturaleza de los
términos de Coriolis se observa que no se puede dar un valor arbitrario a la componente vertical (wo), ya que
está relacionado con las otras dos componentes. El primer paso es determinar las variaciones  en el tiempo
de las tres componentes de  velocidad, de donde posteriormente se determina la trayectoria del movimiento
en tres dimensiones.

ABSTRACT

This note contains an investigation of the inertial motion on the sphere including all the terms of the Coriolis
forces. The velocity vector has a zonal, a meridional and a height components. The time dependence of
these components are calculated by a solution of the three velocity equations containing only the Coriolis’
terms, and the three-dimensional position vector is then calculated from the velocity vector. The results
depend on the latitude of the starting position. For most starting positions it is a good approximation to
consider the latitude as a constant, because the results show that the south-north variations are quite small
for reasonable values of the initial velocity vector which may be considered as the a-geostrophic wind and
thus quite small. These remarks will be considered in detail in the paper. For each case the initial velocity
vector (uo, vo, wo) and the starting position (xo, yo, zo) are given. However, due to the nature of the Coriolis
terms it is seen that the vertical component (wo) cannot be given an arbitrary value since it is related to the
other two components. The first step is to determine the time variations of the three velocity components,
whereafter the trajectory of the three dimensional motion is determined.
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1. Introduction
The inertial motion to be described in this paper is not included in the equations as they are normally
used. The reason is that the third equation of motion in the normal models is replaced by the
hydrostatic equation based on an order of magnitude estimate of the terms which appear in the
third equation of motion. As a consequence of this approximation it is necessary to disregard a part
of the Coriolis terms in the first equation of motion to secure that the model is energetically correct.
While these approximations are well justified in most situations, it is still of interest to determine
the general nature of the full Coriolis terms in all three equations of motion. In the present paper
the solutions with respect to time of the three-dimensional velocity vector created by the Coriolis
terms will be determined. In addition, when the velocity vector is determined, it is in general
possible to calculate the three-dimensional trajectory. Special solutions are necessary if the starting
position is at the Equator or at the poles.
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It can be seen directly from the equations (1) that the Coriolis terms give no contribution to a
change in the kinetic energy. This result is obtained when the first equation is multiplied by u, the
second by v and the third by w, whereafter the three equations are added. It is then found that
d[1/2(u2+v2+w2)]dt is zero. If any changes in the equations are wanted, they should be done in such
a way that the kinetic energy is constant. One may for example include only the first two equations
of motion. If so, any term containing e has to be excluded. We have then the classical problem
appearing in most textbooks as seen in (2).

(1)

2. The Coriolis equations
When we include only the Coriolis terms in the three equations of motion, they take the form given
in equations (1).

d v
d t a
φ
= (2)

The easy solution is obtained by using ϕ = ϕo. It is this solution which is produced in the
textbooks. It is, however, also possible to integrate the three equations in (2) by numerical methods.
Figure 1 shows the two velocity components, and it is seen that the trajectory is a circle for all
practical purposes. Figure 2 gives the latitude as a function of u. It is seen that the variation of  the
latitude is about 2 degrees, and it is thus a good approximation to use a constant latitude to solve
the problem.
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Fig. 1. The two-dimensional problem with latitude variations. The (u, v) diagram for the horizontal case
with an initial velocity of (10, 10). It is seen that (u, v) describes a circle with a radius of 14.4 m per s.
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Fig. 2. The two-dimensional problem with latitude variations. The variation with respect to latitude
on the ordinate is seen to be about 2.5 degrees of latitude amounting to about 278 km.
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We shall then turn to the three-dimensional case. Also this case can be carried out making some
simplifying assumptions, but we shall consider the general case on the sphere. If we want to
include the trajectories in three dimensions we find a total of six dependent variables, i. e. three for
the velocity components (u, v, w) and three to compute the trajectories. We shall in the present case
use longitude (λ), latitude (ϕ) and the height (z) over the surface of the Earth as seen in (3).
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0 0( )/w w e v v f= + − (4)

It should also be pointed out that it follows from the basic equations of the problem that the
vertical velocity cannot be selected in an arbitrary way. It is seen from the second and the third
equations that ev + fw is constant. We obtain therefore the relation shown in (4).

The expression in (4) shall replace the third equation of motion. The equations in (4) may be
integrated numerically to obtain both the velocity components and the three-dimensional trajectories
where the particle are determined by longitude, latitude and height. The integration scheme has
been the Runge-Kutta system with a time step of 5 minutes. The initial conditions require values of
the three velocity components and the position. In the selection of the initial velocity components
it should be recalled that the observed atmosphere is quasi-geostrophic, meaning that a major part
of the velocity is in equilibrium with the pressure field. The values for the present problem are
therefore to be consider as the a-geostrophic wind components. The selected values should thus be
quite small to give a realistic integration. It was decided to select small values of u and v, and w=0.

Figures 3a and 3b shows the case where the initial latitude is 45 degrees north. The figure
shows the latitude as a function of longitude with the initial values  x = 0. 0 and y = 45 degrees. The
variations are small for both variables with a change in the south-north direction of only about 0.06
degrees, while the change in the longitudinal direction is about 0.06 degrees. In this, as well as
later figures the x, y and z coordinates are expressed in kilometers. We notice thus variations of 8
km in the x-directions and 6 km in the z-direction. The large vertical variation is due to the fact that
the v and w are related to each other.
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Fig.  3b.  Spherical case,  uo = 5  m/s,
vo = 0.25 m/s,  zo = 1 km,  lat = 45 deg.
z = z (x) for the same initial conditions
as in Figure 3a.
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Fig. 3a. Spherical case, u o = 0.5 m/s,  vo
= 0.25 m/s, zo = 1km, lat =  45.0 deg.
The spherical case with the initial state
given above the figure. Note that the
small initial velocities give a very small
latitudinal variation.
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The integrations were repeated for an initial latitude of 80 degrees as shown in Figures 4a and
4b. It is seen that the horizontal and vertical variations are much smaller than at middle latitudes
due to the large value of sine and the small values of cosine of the latitude.

As the final example we shall illustrate the behavior at the latitude of 10 degrees. We still use
the same values of uo and vo. Figure 5a shows the values of u as a function of time for 24 hours. We
notice a period of about 12 hours. Figure 5b shows the time variation of the meridional velocity
component (v) which varies between 0.16 m per s and 0.33 m per s. The vertical velocity, shown
in Figure 5c, is zero at t=0 and shows also a periodic variation of about 12 hours. Figure 5d
indicates that the trajectory components in the horizontal plain of longitude and latitude oscillate
with small amounts. The variation in the vertical direction is large as can be seen from Figure 5e,
where the maximum in the height is more than 10 km.
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Fig. 5a. Primitive equations, uo= 0.5
m/s, vo = 0.25 m/s, lat. = 10 deg. The
starting latitude is 10 degrees of
latitude. The zonal velocity is shown
as a function of time.
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Fig. 4b. Spherical case,  uo= 0.5 m/s,
vo= 0.25 m/s, lat:10 deg.  y = y (x) for
the case shown in Figure 4a. Note the
very small changes in the latitude.
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Fig. 4a. Spherical case, uo = 0.5 m/s, vo
= 0.25 m/s, lat:80 deg. This figure
corresponds to Figure 3a except for the
initial latitude, which is now 80 degrees
of latitude.
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3. Final remarks
The Coriolis terms which normally are excluded from the equations of motion have been investigated
in isolation. The trajectories have been computed at various latitudes. It is seen that these terms
may be of importance in connection with other terms such a gravity. An area of interest is the
calculation of trajectories where the rotation of the Earth is of importance. Examples are the motion
of satellites or the path of particles in the atmosphere.
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Fig. 5b. Primitive equations, uo = 0.5 m/s, vo= 0.25 m/s, lat. = 10 deg. The meridional
velocity as a function of time.
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Fig. 5c. Primitive equations, uo= 0.5 m/s, vo= 0.25 m/s, lat. = 10 deg. The vertical
velocity as a function of time.
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Fig. 5d. Primitive equations, uo= 0.5 m/s, vo= 0.25 m/s, lat.= 10 deg.  A longitude-
latitude diagram showing the small variations in the wind components u and v.
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Fig. 5e. Primitive equations, uo= 0.5 m/s, vo= 0.25 m/s, lat.= 10 deg.  A longitude-height diagram
showing the large variation of the trajectory in the vertical direction.
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