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RESUMEN

Ha sido desarrollado un algoritmo numérico para estudiar la inestabilidad lineal de un flujo estacionario no divergente
en una esfera en rotacién. La precisién del algoritmo se prueba con soluciones zonales de la ecuacién no lineal de
vorticidad barotrépica (polinomios de Legendre, ondas zonales Rossby-Harwitz y modones monopolares).

ABSTRACT

A numerical algorithm for the normal mode instability study of a steady nondivergent flow on a rotating sphere
is developed. The algorithm accuracy is tested with zonal solutions of the nonlinear barotropic vorticity equation
(Legendre polynomials, zonal Rossby-Harwitz waves and monopole modons).
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1. Introduction

The instability caused by the existence of a sufficiently large horizontal shear of the basic flow is known
as barotropic instability (Pedlosky, 1979). The barotropic instability of atmospheric flows has been studied
for half a century (Kuo, 1949; Lorenz, 1972; Simmons et al., 1983; Haarsma and Opsteegh, 1988; etc.).
Lorenz (1972) noted that this type of instability accounted for the existence of a limit in the atmospheric
predictability. On the other hand, Simmons et al. (1983) showed that barotropic instability can be respon-
sible for a low frequency variability of the barotropic atmosphere. Usually a flow is said to be stable if
any its perturbation remains bounded with time in some norm. The two most commonly used types of the
flow stability are: the linear (exponential or algebraic) stability when the flow is subjected to infinitesimal
perturbations (Demidovich, 1967) and the nonlinear stability when the flow is subjected to small but finite
perturbations (Liapunov, 1950, 1966; Arnold, 1965).

Many papers have been devoted to the linear instability of the zonal flows since the famous work by
Rayleigh (1880) (see, for example, Pedlosky, 1979; Drazin and Reid, 1981; Green, 1995). However, there
are a lot of important questions that remain to be answered. The application of numerical methods permits
further insight into this problem. However, the basic challenge is the accuracy of the numerical stability
results (Skiba, 1998). Therefore, testing of numerical algorithms used in the stability study is of paramount
importance. In the present work we describe a numerical algorithm developed for the normal mode (expo-
nential) instability of arbitrary steady flow in an ideal nondivergent fluid on a rotating sphere. In the first
stage of the test we analyze only zonal solutions (Legendre polynomial flows, zonal Rossby-Haurwitz waves
and monopole modons) of the equation

SY I A +24) = 0 (1)

It is the nonlinear barotropic vorticity equation (BVE) written here in a non-dimensional form in the
spherical coordinates (A, 1) where X is the longitude, u = sin ¢, ¢ is the latitude, 1 is the streamfunction, A
is the Laplacian, and J is the Jacobian (Silberman, 1954; Adem, 1956; Platzman, 1962). The stability of a
steady solution to problem (1) is of considerable hydrodynamic and geophysical interest. It should be noted
that only the exponential (normal mode) stability can be analyzed numerically, whilst computer calculations
are unusable in the algebraic stability study. Indeed, every nondefective matrix can be diagonalized by a
similarity transformation. Therefore, the algebraic growth of perturbations occurs just in the case when
the stability matrix is defective, that is, when its Jordan canonical form has at least one Jordan block of
dimension k x k where k > 1 (Stewart and Sun, 1990; Demidovich, 1967). Since the Jordan canonical
form is too sensitive, and can be destroyed even by an infinitesimal perturbation of the elements of the
stability matrix (Wilkinson, 1965), the algebraic instability cannot be analyzed numerically. The numerical
stability study algorithm has been tested here using a few theoretical normal mode stability results obtained
for exact solutions to the BVE (1). In particular, we use the Rayleigh-Kuo necessary condition for the
instability (Rayleigh, 1880; Kuo, 1949) which has been almost the only useful instability condition known
for zonal solutions to the BVE for half a century. Notice that the utility of the Rayleigh-Kuo condition
is limited, since each Legendre polynomial (LP) flow aP%(u) (being a basic function for the zonal flows)
satisfies this condition if n > 3 and amplitude @ is sufficiently large (Baines, 1976; Skiba, 2000). We do
not use the Tung (1981) instability condition, since its application in practice is not easier than that of
the famous Liapunov (1966) theorems; instead, we apply the necessary normal mode instability conditions
recently obtained for the LP flows, steady Rossby-Haurwitz waves and modons in Skiba (2000) and Skiba
and Strelkov (2000a,b). These conditions are related to the spectral structure of unstable normal modes and
state that Fjortoft’s (1953) average spectral number of the amplitude of an unstable mode must be equal
to a special number. For a LP flow aP%(u), the new instability condition complements the Rayleigh-Kuo
condition in the sense that while the latter deals with the basic flow structure; the former characterizes the
structure of a growing perturbation. Also, we have checked the stability of the LP flows with n = 1 and
n = 2 (Baines, 1976) and taken into account that zonal wavenumber m of unstable modes of each LP flow of
degree n must satisfy the condition 0 < |m| < n (Skiba, 1989; Skiba and Adem, 1998). All these assertions
are given in the next section (see Cases 1-5).
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2. Normal mode stability method

We now describe the normal mode method for the study of the exponential instability of a two-dimensional
steady flow on a rotating sphere (for more details about the normal mode method on a sphere, see Hoskins
(1973), Baines (1976), Simmons et al. (1983), Dymnikov and Skiba (1987), Skiba (1989}, Verkley (1990),.

Skiba and Adem (1998)). Let 9(), 1) be the streamfunction of a solution to equation (1) on the unit sphere
S. The evolution of an infinitesimal perturbation (A, u, t) to ¥(X, u) is described by

o
o =L
g()‘a My tO) = £O(>‘a /1') (2)
where £ = At is the perturbation vorticity,
LE=—J($,6) - J(ATE,Q) 3

is the linear operator defined on sufficiently smooth complex-valued functions, and Q= Azz + 2u is the
absolute vorticity of the basic flow. The inner product and the norm of functions on S are defined as

1 27
(f,9) =/fg*dsz/ fg*didu
S -1Jo
and

£l = (f, /)2

respectively, where ¢g* is the complex conjugate of g. We will use the spectral method (Silberman, 1954;

Machenauer, 1979) when both the solution 1 and the perturbation ) are expanded on S in an infinite series
of the orthonormal spherical harmonics Y,™(\, 1) = P™(u)e'™* where P (u) is the associated Legendre
function of degree n and zonal wavenumber m . We denote by PV a subspace of spherical polynomials of
the degree N generated by N(N + 2) harmonics ¥;*(A, u) with —n < m <nand n =1,2,...,N. In order
to construct the matrix representing the operator £ of problem (2)-(3) in the subspace PV, we assume that

¥(A, ) belongs to PM, and (), i, t) and €(\, u, t) = Ap(A, u,t) belong to PN (M < N), that is,

. M . N N
b= dpYs, v=A"=-) xi'Ya, £=) LiYa 4)
B8 e a

For the sake of simplicity, hereinafter we use the following generally accepted notations: o = (mq,na),
Yo = Pg:,a (u)ezm[,/\’ Xa = Na(Na + 1), €a = 571{2,0‘1 and

N N N
a Na=1lMmag=—ng

(Platzman, 1962; Merilees, 1968; Hoskins, 1973; Machenauer, 1979; Skiba, 1989; Pérez-Garcia and Skiba,
1999). Substituting (4) in (2), (3) and taking the inner product of the equation obtained with a spherical
harmonic Y, leads to
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d

N
it = (L6 0) = [ (€OVGds = Loty 5

where
Loy = (‘CY’WYa) (6)

is the (a,~y)-element of the matrix L representing operator £ in the subspace PV. Substituting (3) in (6)
gives

Loy = "(J(J"'FX';IQ,YW),Y&) (7

Thus, in subspace PV, problem (2) is reduced to

d- -
Zf=1
Ty ®
The matrix element (7) can be written as
M ~
Loy = Z Bpar€p + Day )
B

(Skiba, 1989) where Dy, = i2may X5 184~ is the pure imaginary diagonal element of L, since bay = bnan, bmom,
is the product of two Kronecker deltas, and

1
Bgay =1i(x3" — x5") /_1 ﬁPa(u) [mp Ps(p) Hy (1) ~ moy Py (1) Hp (1)) dpe

is the triad nonlinear interaction coefficient, calculated with Gaussian quadrature formula (Machenauer,
1979). Looking for infinitesimal perturbation (4) in the form of a normal mode

YA, t) = T, et €\ u,t) = AT(A, p)e* (10)
leads to the spectral problem
LV =wV

for the operator £ where w = w, + iw; is the eigenvalue, and V(A u) = AW(A, u) is the corresponding
eigenfunction. The streamfunction of a normal mode (10) can be written as

B(A, 1) = [T(, p)|ertel@+ed) (11)
where

\Il(/\uu/) = \I’T()‘a.u) + 7'\IJ1()‘).U‘) = ]\I/()‘>N)|ei9
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is the amplitude, and 8 = 8(\, u) = arg U(A, p) = arctan {¥;(X, p)/ ¥ (A, p)} is the initial phase of the mode.
Thus, a mode (10) is unstable if w, > 0, decaying if w, <0, neutral if w, = 0, and stationary if w; = 0. The

e-folding time 7. and period T of the mode are determined (in days) as 7. = 2_7r|1w_rl and T = ITL—I’ respectively.

The differential spectral problem LV = wV is reduced to
LY =wv (12)

in the subspace PV where v = {Vy} = {—x4¥,} is the eigenvector whose components are Fourier coeffi-
cients V;, of the eigenfunction V' with ny < N.

3. Instability conditions

We will test the numerical normal mode stability algorithm with three types of zonal flows being exact BVE
solutions: LP flows, zonal Rossby-Haurwitz waves and monopole modons.

a) Legendre-polynomial (LP) flow:

b(u) = aPy(u) (13)

This zonal flow is described by the single Legendre polynomial of degree n > 1 and amplitude a.

b) Zonal Rossby-Haurwitz (RH) wave:

D) = ——XQ——M I (14)

Here

Xn = n(n + 1), (15)
n > 1, and a # 0 is arbitrary real amplitude. It is a particular (zonal) case of the stationary RH wave

w(&u)=—ﬁu+ S YO (16)

m=—-n

being an exact solution to the BVE (1) for arbitrary coefficients i

¢) Monopole modon with uniform absolute vorticity in the inner region :

[ B,S%8) = Cop+ D, in S,
Wlw) = { B.T0(6) — Cip+ D; in S; (17)
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(Verkley, 1990). This zonal flow is defined in different ways in two regions of the sphere S: the inner modon
region S; = {(A, i) € S : p > po} and outer modon region S, = {(\, ) € S : 1 < pa}, 0 < pg < 1. Here
Co=2/(xo —2); Ci =2/(Xa — 2); Bo, Bi, D, and D; are constants; y = p, is the boundary between the
regions S; and So; SQ(0) = P2(—cosf); 6 is the colatitude; T°(6) = Incos (§).

Note that for a zonal flow, the structure of mode (11) is

(A, pt) = U(p)e™ e (18)

In trials of the numerical normal mode stability study algorithm we have used the following theoretical
results:

Case 1. (Kuo, 1949) Let 1(u) be a zonal flow on S. Then a normal mode (18) may be unstable only if
the derivative d Q of the absolute vorticity Q= Aw + 2u of flow 'g[)( ) changes its sign at least in one point
of the interval ( 1)

For LP flow (13), dMQ =2-aXxng; d P0 Thus, there is a critical amplitude a for developing the instability,
due to the sphere rotation.
Case 2. (Baines, 1976). Any mode (18) of LP flow (13) of the degree n = 1 or n = 2 is linearly stable.

Case 3. (Skiba and Adem, 1998). Let n > 3. Any mode (18) of LP flow (13) may be unstable only if zonal
wavenumber m of the mode satisfies the condition 0 < |m| < n.

Case 4. (Skiba, 2000). Let 4 be a LP flow (13) or RH wave (16). Then the amplitude ¥ of each unstable
or decaying mode (10) must satisfy the condition

oy
x«/—ﬁ—xn—n(nﬂ) (19)

where y¢ is the square of Fjortoft’s (1953) average spectral number of the mode amplitude ¥, and K(¥) =
LIIVP|? and n(¥) = 1||A¥|? are the total kinetic energy and enstrophy of ¥.

Case 5. (Skiba and Strelkov, 2000a,b). Let 1 be a monopole or dipole modon by Verkley (1990) with
uniform absolute vorticity in the inner region S;. Then the amplitude ¥ of each unstable or decaying mode
(10) must satisfy the condition

Xv = Xo = 0o+ 1) (20)
where o is the degree of the modon in the outer region. Moreover, the vorticity of each unstable mode must
be zero in S;.

Also we have used the equation

(21)

=—Ama%&( uvds—/\/_

that describes the evolution of the total energy K () = ||V#||? of an infinitesimal perturbation ¥(, 1, t)
to a zonal flow ¥(i) on the sphere S where

- oY oY 1 oY
=—V1I-p@2L u=-1- 2 = — = 22
v H Ou v . ou v \/1_—/ﬂax\ (22)
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are the velocity components of the basic flow and the perturbation, respectively. This equation is useful
in the analysis of the spatial structure of local unstable perturbations on the sphere. Usually, important
localized perturbations are in the regions related with distinguishing features of the basic flow. Unlike the
perturbation energy equation on the 3-plane (Pedlosky, 1979), its spherical analogue (21) contains one more
integral of the product of the basic velocity @ with uv. Whereas the first integral dominates principally at
the sides of the basic jets located in the tropics and mid-latitudes (where both %d(u) and /1 — u? are
large), the second integral can be significant in the central parts of strong jets (where velocity 4 is large),
and especially when such jets are located in the polar regions (where —1\/_“——;3 is also large).

By (21), the sign of £ K depends on the signs of the products Edﬁﬂ(/,a) - (uv) and - (uv) in various regions

of the sphere. In the case when the first integral is dominant, one can say that the growth (or decrease) of
the perturbation energy takes place in the regions where the inclination of the isolines of the perturbation
streamfunction 1 is opposite to (coincides with) the inclination of the profile of the basic velocity @{u), that
is, in the regions where product % #(p)-uv is positive (negative) (Pedlosky, 1979).

4. Numerical experiments

We now describe the numerical normal mode stability study results obtained with our algorithm for the LP
flows, zonal RH waves and monopole modons. In all the experiments, the spectral problem (12) is solved
with the QR-factorization (Wilkinson, 1965). The skill of the normal mode stability study algorithm has
been checked with the following facts:

a) the eigenvalues must usually appear in groups of 4 eigenvalues located symmetrically about the origin
on the complex plane (Arnold, 1965);

b) any LP flow of degree one or two must be stable and have only neutral modes (Case 2);

¢) for a basic LP flow of degree n, the zonal wavenumber m of each unstable mode must belong to interval
0 < |m| < n (Case 3);

d) any LP flow of degree n as well as any zonal RH wave may have unstable mode only if Rayleigh-Kuo
condition is satisfied (Case 1);

e) if degree n of the LP flow is odd then all the modes are divided into two groups that contain just
symmetric or antisymmetric (with respect to the equator) modes (Skiba, 1989; Skiba and Adem, 1998);

f) spectral number of the amplitude of each unstable mode must be equal to a special number (Cases 4
and 5);

g) the amplitude of each unstable mode must be orthogonal to the basic flow in the energy inner product
(Skiba, 2000);

h) the growth rate of the most unstable mode must be limited from above by the theoretical estimations
(Skiba, 2000);

i) for a modon by Verkley (1990), the vorticity of each unstable mode must be zero in the inner modon
region Sj;

j) the generation and dissipation of the perturbation energy of a zonal flow should be explained with
formula (21).

The requirements a) and h) have been satisfied in al! the experiments. By the requirement g), the ampli-
tude of each unstable mode must be orthogonal to the basic flow in the energy inner product: ¥, Aw> =0.

This property is always obeyed for the zonal flows, since all the calculated modes have the form (18), that
is, have a harmonic structure in the A-direction:

(5a0) = (ad8) == [ adw o { [

2

e—im*d,\} dp=0
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a) Legendre-polynomial flow (13).

For such flows, the structure of the stability matrix L (see (9)) was analytically analyzed by Skiba and
Adem (1998).

1. Let n = 1. The stability matrix L is then diagonal with pure imaginary diagonal elements L,o. In this
case, the eigenvalues coincide with the diagonal elements, and hence, w, = 0 for any eigenvalue. Therefore
all the modes are neutral regardless of the amplitude a of the LP flow. The amplitude of each mode coincides
with the corresponding spherical harmonics Y, (A, 1), and hence is symmetric or antisymmetric about equator
depending on whether n, — m, is even or odd.

2. Let n = 2. Then stability matrix L is tridiagonal, and the calculations give w, = 0 for all eigenvalues,
that is, all the modes are neutral. Thus, any LP flow of the degree one or two is exponentially stable in full
agreement with Case 2.
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.................................
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Fig. 1. The profile of the velocity %(4) of the Legendre-polynomial flow (13) with 7 = 3 and @ = (.08 (Fig. 1a), and isolines

of)the amplitudes W,.(A, 4t) of two most unstable modes corresponding to wy, = 0.2073 (Fig. 1b) and w, = 0.1576 (Fig.
lc).
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3. Let n =3 and a = 0.08. Here n is odd, and in accordance with requirement e), the amplitude of all
the modes can be just of the two types: symmetric or antisymmetric around the equator x = 0. The most
unstable mode (18) is symmetric around the equator, has w, = 0.2073 and zonal wavenumber m = 2, and
spectral number yg of its amplitude is equal to 11.999 (the corresponding number provided by Case 4 is
x3 = 12 ). The second unstable mode has w, = 0.1576 and zonal wavenumber m = 1, is antisymmetric
with respect to equator, and spectral number xy of its amplitude is 11.999 as well. The profile of the basic
flow velocity 4 is shown in Figure 1a, while the real parts ¥, of the amplitudes of the first and second most
unstable modes are presented in Figure 1b and Figure 1c, respectively. For convenience in using formula
(21), the figures are marked with the symbols “+ + +” and “ --” at the positions of the basic flow jets
with positive and negative velocities 4, respectively. Indeed, the profile of % has the same inclination inside
each region (channel) between two neighboring lines marked with different symbols, and this inclination is
changed in passing from one region to another. It should be noted that for all the modes, nonzero amplitude
values are captured in some latitudinal bands (Tung, 1981). An analysis of the fields shows that both
integrals of the formula (21) contribute to the instability for the most unstable mode, while the first integral
is dominant in generating the instability for the second mode. It should also be noted that values of uv are
much smaller in the second case. In the experiments carried out, the magnitude |w.,| increases with the basic
flow amplitude a. This fact is also in full accordance with the theoretical estimates (requirement h). We use
this requirements to control the growth rate of unstable modes. The main parameters of the two unstable
modes (zonal wavenumber m, the real part w, and imaginary part w; of the eigenvalue, spectral number
xv, e-folding time 7¢, and period T) are given in Table 1.

Table 1. The two most unstable modes of LP flow (13), n = 3, a = 0.08

Modes m Wy w; Xy T, days Period T days
1 2 02073 -0.7334 11.9999 0.76 1.36
2 1 0.1576 0.0670 11.9999  1.00 14.90

4. Let n = 4 and a = 0.06. The profile of the basic flow velocity @ is shown in Figure 2a, while isolines
of the real parts ¥,.(A, u) of the amplitudes of the four most unstable modes are presented in Figures 2b-e.
Since n is even, the amplitude of all the modes are asymmetric around the equator. Moreover, the mode
perturbations are basically located in one of the two hemispheres. Spectral numbers y ¢ of their amplitudes
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Fig. 2. The profile of the velocity % () of the Legendre-polynomial flow (13) withm = 4 and @ = 0.06 (Fig. 2a), and isolines

of the amplitudes W,.(\, 1) of four most unstable modes corresponding to w, = 0.2604 (Fig. 2b), w, = 0.2373 (Fig. 2¢),
wr = 0.1924 (Fig. 2d), and w, = 0.1485 (Fig. 2e).

almost coincide with the number x4 = 20 provided by Case 4. An analysis of the fields shows that both
integrals of formula (21) contribute to the instability for the first three most unstable modes (Figures 2b-d),
while the contribution of the first integral in generating the instability for the fourth mode is weaker (Figure
2e). The main parameters of these modes are given in Table 2. It is seen that the requirements c), f) - h)
are fulfilled.

Table 2. The four most unstable modes of LP flow (13), n = 4, a = 0.06

Modes m Wy w; X 7. days Period T days
1 2 0.2604 -0.1099 19.9999 0.61 9.09
2 2 0.2373 0.6876 19.9999 0.67 1.45
3 3 0.1924 0.4080 19.9999 0.82 2.45
4 1 0.1485 -0.0578 20.0000 1.07 17.28
5. Let n = 5 and a = —0.06. The profile of the basic flow velocity @ is shown in Figure 3a, while

isolines of the real part ¥,.(\, 1) of the most unstable mode amplitude are presented in Figure 3b. The zonal
wavenumber of the mode is m = 2, and mode amplitude is symmetric around the equator (n is odd). The
perturbations are located in a neighborhood of the two subtropical jets, and both the integrals of formula
(21) contribute to the mode instability with the dominant role of the first one. The main parameters of the
seven most unstable modes are given in Table 3. It is seen that the requirements ), f) - h) are fulfilled, and
the dominant zonal wavenumbers of the modes are m = 2 and m = 3.
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Fig. 3. The profile of the velocity ﬂ(p) of the Legendre-polynomial flow (13) with m = 5 and @ = —0.06 (Fig. 3a), and

isolines of the amplitude \I’r(/\, ,u) of the most unstable mode corresponding to W, = 0.4922 (Fig. 3b).

Table 3. The seven most unstable modes of LP flow (13), n = 5, a = —0.06

Modes m Wr w; Xy  Te days Period T' days
1 2 0.4922  0.0592 29.9999  0.32 16.87
2 2 0.4688 0.1809 30.0000 0.33 5.52
3 4 03630 0.4042 29.9999 043 247
4 3 03222 0.0110 30.0000 0.49 90.82
5 302745  0.3886 299999  0.57 2.57
6 2 0.1662 -0.6740 299999  0.95 148
7 I 0.1421  0.1088 299999  1.11 9.18

6. Let n = 6 and @ = 0.03. The main parameters of the seven most unstable modes are given in Table
4. Unstable perturbations are located in the Northern Hemisphere (modes 2, 3 and 4), in the Southern

Hemisphere (modes 1, 6 and 7), and in the tropics (mode 5). It is seen from Table 4 that the requirements
c), f) - h) are fulfilled.

Table 4. The seven most unstable modes of LP flow (13), n = 6, a = 0.03

Modes m W, w; Xw T. days Period T' days

1 2 03471 0.1376  41.9999  0.45 7.26
2 2 0.3435  0.5340 41.9999  0.46 1.87
3 3 02700 0.3556 41.9999  0.58 2.81
4 0.2463  0.2251 42.0000  0.64 4.44
) 5 0.2137 -0.3101 42.0000  0.74 3.22
6 4 0.1994 0.3646 42.0000 0.79 2.74
7 3 0.1798 0.0786 42.0000 0.88 12.71
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7. Let n = 7 and a = 0.01. The main parameters of the twelve most unstable modes are given in Table 5.
The majority of the modes (modes 1, 2, 6, 7 and 8-12) are symmetric around equator (requirement e) and
located in the middle latitudes.The requirements c), f) - h) are fulfilled, too.

Table 5. The twelve most unstable modes of LP flow (13), n =7, ¢ = 0.01

Modes m Wy W; Xw Te days Period T days
1 2 01245 -0.3719 56.0000 1.27 2.68
2 2 0.1181 04005 56.0000 1.34 2.49
3 4 0.1153 0.1564 55.9999 1.37 6.39
4 5 01115 -0.2715 55.9999 1.42 3.68
5 6 0.1112 -0.2732 56.0000 1.43 3.65
6 4 0.1027 0.1891 55.9999 1.54 5.28
7 3 0.0828 0.3586 55.9999 1.91 2.78
8 o 0.0786 -0.1774 56.0000 2.02 5.63
9 1 0.0755 0.0630 56.0000 2.10 15.86
10 3 0.0739 0.0983 56.0000 2.15 10.16
Ir 1 0.0727 0.0635 56.0000 2.18 15.73
122 0.0645 0.0271 56.0000 2.46 36.81

b) Zonal Rossby-Haurwitz waves (14)

1. Let n =5 and a = 0.0052. The profile of the basic flow velocity % is symmetric around equator (Figure
4a) and has a jet in the middle latitudes. There are just four different unstable modes, and the first of
them is quasi-stationary (Table 6). Spectral numbers xg of the amplitudes of these modes coincide with the
theoretical number x5 = 30 provided by Case 4. The real part of mode (18) can also be written as

B (M) = |0 ()| €7 cosm (A RO ‘i;;"t) (23)
or

Yr(A, p,t) = et (U, (A, 1) coswit — U, (N, 1) sin wyt]

where 2= is the phase velocity, and the initial phase s depends on u. For positive (or negative) “z the
mode moves to the west (east). Isolines of the real partnz23) of the most unstable mode are given in Figures
4b-d at the moments ¢t = 0, t = T/8 and t = T/4, respectively. The mode moves very slowly to the west.

Spatial variations of the field (23) with time are due to the dependence of the initial phase ﬂ_”l:l on p. The
amplitude of the most unstable mode is antisymmetric about the equator (n is odd). An analysis shows that
both integrals of formula (21) contribute to the mode instability. The requirements f) - h) are fulfilled.
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Fig. 4. The profile of the velocity %(ft) of the zonal Rossby-Haurwitz wave (14) with 72 = 5 and @ = 0.0052 (Fig. 4a), and
isolines of W,.(A, i, t) for the most unstable mode (W, = 0.0268) at the moments t = 0 (Fig. 4b), t = T/8 (Fig. 4c)
and t = T'/4 (Fig. 4d).

Table 6. The four most unstable modes of RH wave (14), n = 5, a = 0.0052

Modes m Wy w; X¢  Te days Period T days
1 1 0.0268 0.0064 30.0000 5.92 155.15
2 1 0.0151 0.0287 30.0000 10.52 34.74
3 3 0.0142 -0.1255 29.9999 11.16 797
4 2 0.0041 -0.2510 30.0000  38.20 3.98

2. Let n = 6 and a = 0.002. There are just three different unstable modes, besides, the first two of them
are quasi-stationary again (see Table 7). Spectral numbers xy of the amplitudes of these modes coincide
with the number xg = 42 provided by Case 4.
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Table 7. The three most unstable modes of RH wave (14), n = 6, a = 0.002

Modes m Wy wW; Xy Te days Period T days
1 1 0.0103 0.0128 42.000 1531 77.68
2 2 0.0085 0.0303 42.000 18.51 32.90
3 2 0.0014 0.1031 42.000 107.15 9.69

3. Let n = 7 and a = —0.004. The profile of the basic flow velocity 4 is symmetric about equator (Figure
5a) and has four jets. The main parameters of the eight most unstable modes are given in Table 8. Almost all
of them are quasi-stationary. Spectral numbers yy of the amplitudes of these modes are practically coincide
with the number x7 = 56 provided by Case 4. Isolines of the amplitude ¥,.(X, 1) of the most unstable mode
corresponding to w, = 0.0515 are presented in Figure 5b.

ST A R U WO VAN T W VU W U S AT U W W S T T W U U0 U W W T T WO Y WO VO SR S O
(LI I S A I e e 0 5
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Fig. 5. The profile of the velocity u(j) of the zonal Rossby-Haurwitz wave (14) with n = 7 and @ = —0.004 (Fig. 5a), and
isolines of the amplitude W, (A, i) of the most unstable mode corresponding to w, = 0.0515 (Fig. 5b).

Table 8. The eight most unstable modes of RH wave (14), n = 7, a = —0.004

Modes m Wy w; Xy Te days Period T days
1 2 0.0515 0.0099 56.000 3.08 100.65
2 2 0.0501 -0.0067 56.000 3.17 148.80
3 3 0.0370  0.0044 56.000 4.29 223.45
4 J  0.0362 0.0035 56.000 4.39 279.75
) 4 0.0266 -0.0093 56.000 5.96 106.53
6 5 0.0157 -0.0554 56.000 10.12 18.03
7 1 0.0128 -0.0011 55999 12.36 867.33
8 1 0.0081 0.0089 55.999 19.58 111.73

¢) Zonal flow in the form of a monopole modon (17)

As one more test we now consider the zonal flow that has the form of the monopole modon (17) with
uniform absolute vorticity in the inner region S; (Verkley, 1990). The main parameters of the modon are
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o = 8.06 and ¢, = 65.277. The profile of the modon velocity % (Fig.6a) has three jets in the outer modon
region S,. The most unstable mode has been calculated with three different truncation numbers: 151,73
and Tyz. Isolines of the real part ¥, (A, ) of the amplitude of this mode are presented in Figures 6b, 6¢ and
6d, respectively. The basic parameters of the mode are given in Table 9. In Fig. 6b-d, nonzero perturbations
are in a latitudinal belt located in the outer modon region S,, as it must be according to Case 5. In this
belt, the inclination of the principle axes of the vortices is opposite to that of the modon velocity profile,
the result being in full accordance with the first integral of the formula (21). The second integral in (21)
contributes in the energy growth much less than the first one, and basically in the vicinity of the modon
jet center that contains important perturbations. The polar regions contain no perturbations and make no
impact on the energy behavior.

...................................
t
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Fig. 6. The profile of the velocity %(t) of the monopole modon (17) with o = 8.06 and ¢, = 65.277 (Fig. 6a), and isolines
of the amplitudes W,.(X, 11) of the most unstable mode at resolutions To; (Fig. 6b), T31 (Fig. 6¢c) and Ty (Fig. 6d).
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Table 9. The most unstable mode of modon (17) for T51, T3; and Tyg, ¢ = 8.06, ¢4 = 65.277

‘Truncation Mode w w: Te Period
number ’ T : Xw days T days
Tox 1 5 0.0524 0.0177 80.72 3.03 56.31

Ty, 1 3 0.0627 0.0373 70.56 253 26.74

Tas 1 5 0.0569 0.0457 74.60 2.79 21.87

It should be noted however that to achive a good agreement of the numerical and theoretical results
the spectral resolution up to Ty, is still insufficient. Indeed, although Table 9 shows a convergence of the
numerical results as truncation numbers M and N of the Fourier series (4) increase, this convergence is
rather slow. For the most unstable mode, for example, one can still see a difference between the theoretical
value xo = o(0 + 1) = 73.02 of the spectral number xy (according to the Case 5) and its numerical value
which is equal to 80.72 at resolution T5;, 70.56 at resolution T3;, and 74.60 at resolution Tyo. For the second
unstable mode, the corresponding numerical values are 78.81 at Tb;, 73.95 at T3, and 73.11 at Tya, that is,
they are closer to the theoretical value. Besides, as it is seen from Figure 6b-d, the most unstable mode is of
the same structure at resolutions T5; and Tya, but its structure is changed at resolution T3;. This situation
occurs when the modon has a few (at least two) most unstable modes with approximately equal real parts
wr. Dikii (1976) showed that unstable modes of a zonal flow always correspond to the isolated eigenvalues.
However, if the distance between two isolated eigenvalues with maximum real parts w; is very small then a
high resolution is required to approximate well a concrete eigenvalue and the corresponding mode. Thus, the
change of the structure of the most unstable mode is due to insufficient resolution and quite large truncation
errors (Simmons et al. 1983, Skiba, 1998). And although spectral numbers xy for the first two most unstable
modes calculated tend to the theoretical value x, = 73.02 as truncation numbers M and N of the Fourier
series (4) increase, the convergence is slow, and a higher resolution is required to get more precise results.
This phenomenon is explained by the fact that the u-derivative of the modon vorticity is discontinuous at
the boundary y = u, separating the regions S; and S, on the sphere (Verkley, 1990; Neven, 1992), that is,
the modon is not so smooth as LP flows or RH waves. As a result, the series of the spherical harmonics for
the modon and its perturbation converge (in Sobolev’s norms) slower than the corresponding fields for the
LP flows and RH waves (Topuria, 1987; Skiba, 1989, 1994, 1997). Besides, due to the Gibbs phenomenon
(Davis, 1963), the convergence of Fourier series is more rapid inside the regions S; and S, than in a vicinity
of the boundary p = pq, so that, no matter how large M and N may be, at some points of S the finite sums

(4) are very nearly the same as the functions J, ¥ and &, but at other points these sums differ substantially

from 9, 9 and ¢. Thus, truncation numbers M and N considerably greater than 42 must be used in (4) to
reduce numerical errors. The importance of using a high resolution for the solution of the spectral problem
(12) was recently shown theoretically by Skiba (1998) and numerically by Neven (2000a,b) who has used the
resolution T341 and the power method in the normal mode stability study of modons on a sphere.

5. Conclusions

In the present work, we have tested a numerical algorithm developed for the normal mode (exponential)
instability of arbitrary steady flow of an ideal nondivergent fluid on a rotating sphere. Only zonal solutions
to the BVE (Legendre polynomial flows, steady zonal Rossby-Haurwitz waves and monopole modons) have
been examined here. On trials, the skill of the normal mode stability study algorithm has been checked by
comparing the numerical stability results with the theoretical requirements a)-j) formulated in the beginning
of Section 4. For the LP flows and zonal RH waves the numerical stability results have a very good accuracy.
All the theoretical requirements a)-j) have been satisfied. In particular, in all the figures representing the
unstable mode streamfunction 1), the inclination of v-isolines is opposite to that of the basic velocity profile.
According to the first integral of the perturbation energy equation (21), this leads to the perturbation energy
growth (requirement j)). As to the requirements c), we note that in almost 50% of the experiments carried
out, the most unstable mode has zonal wavenumber m = 2. The next two popular zonal wavenumbers are
m =3 and m = 1. This is also in good agreement with the results previously obtained by Baines (1976).
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The numerical results on the monopole modon instability are also satisfactory. The most part of the
requirements a)-j) has been satisfied. However, it should be noted that the modon is not so smooth as LP
flows and RH waves (the derivative of the modon vorticity is discontinuous on a sphere), and as a result,
the series of the spherical harmonics for the modon and its perturbation converge slowly as the truncation
numbers M and N increase (see Table 9). We have found two manifestations of the slow convergence: 1) the
structure of the most unstable mode is changed at resolution T3; being the same at resolutions 75, and Tyo;
and 2) in comparison with the LP flows and RH waves, spectral number xg = n(¥)/K(¥) of the amplitude
of an unstable mode converges rather slowly to its theoretical value. Thus, to get the modon stability results
with a high degree of accuracy, a resolution considerably higher than Ty; is required.
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