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RESUMEN 

 

Se utilizan los procedimientos de Blanchard-Khan (1980) y Klein (2000) para 

resolver numéricamente un modelo neokeynesiano de expectativas racionales. Con 

respecto a este modelo, se muestra cómo desacoplar el sistema lineal de expectativas 

racionales dependiendo de las variables de estado (predeterminadas) y de control 

(no-predeterminadas). La solución es plausible si se conocen los parámetros del 

modelo, además es posible extraer las funciones impulso-respuesta para trazar la 

senda temporal de las variables endógenas impulsadas por perturbaciones de la única 

variable exógena estocástica, el producto natural. 

Palabras clave: Descomposición de Schur; expectativas racionales; forma canónica 

de Jordan; funciones impulso-respuesta; modelo neokeynesiano.  

Clasificación JEL: C01; C13; C15; E52; E58. 

 

ABSTRACT 

 

We use the procedures of Blanchard-Khan (1980) and Klein (2000) to numerically 

solve a New Keynesian model of rational expectations. With respect to this model, 

we show how to decouple the linear system of rational expectations depending on 

the state (predetermined) or control (non-predetermined) variables. The solution is 

plausible if we know the parameters of the model, it is also possible to extract the 

impulse-response functions to plot the time path of the endogenous variables driven 

by disturbances of the only stochastic exogenous variable, namely the natural 

product. 

Keywords: Impulse-response function; Jordan canonical form; New Keynesian 

model; rational expectations; Schur decomposition. 
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INTRODUCCIÓN 

 

Un aspecto de la macroeconomía moderna es la simulación numérica de modelos de equilibrio general 

dinámicos estocásticos (DSGE, por sus siglas en inglés). Estos modelos se desarrollan principalmente como 

respuesta a la ‘crítica de Lucas’, por lo que ahora, la macroeconomía moderna descansa en la microeconomía 

inter temporal. Entre los primeros modelos DSGE, está el de ciclos reales de Kydland-Prescott (1982) y 

Long-Plosser (1983). El modelo de ciclos reales sostiene que las fluctuaciones de la economía agregada son 

la respuesta eficiente a los choques tecnológicos exógenos e inciertos1. Actualmente, académicos y 

economistas profesionales en centros de investigación y organismos oficiales usan extensamente la 

metodología DSGE2. Además, los modelos DSGE empiezan a integrarse en la enseñanza de la 

macroeconomía a nivel pregrado, lo que exige tiempo, esfuerzo y astucia para doblegar los escollos 

inherentes del proceso de enseñanza-aprendizaje3. La instrucción en los modelos DSGE es valiosa por su 

trascendencia en la macroeconomía.  

Este artículo es una contribución pedagógica porque su pretensión es ilustrar la resolución numérica 

de una versión log-linealizada de un modelo neokeynesiano, situado entre los paradigmas IS-LM y DSGE. 

Su análisis descansa en un experimento provisto de un elemento generador de fluctuaciones y materializado 

en un proceso estocástico exógeno para el producto natural. De modo que el sistema económico reacciona 

a los disturbios conforme a sus ecuaciones y expectativas de las variables. En especial, admitimos que el 

sistema está en su senda de equilibrio en el período 0, pero experimenta un choque de oferta agregada en el 

período 1. En los períodos 2, 3,⋯ , 𝑛, el sistema se aleja de su senda de equilibrio, pero después retorna a su 

estado estacionario (en los períodos 𝑛 + 1, 𝑛 + 2,⋯). La convergencia del sistema es inevitable porque los 

valores de sus parámetros son seleccionados de modo que existe una solución estable (condición Blanchard-

Khan). El experimento no requiere del acopio de datos, sino de la aceptación de un impulso exógeno (de 

una sola vez) para trazar la senda temporal de las variables desde la perturbación hasta su retorno al 

equilibrio. 

La dificultad de estos modelos reside precisamente en la manipulación de los términos de 

expectativas de las principales relaciones agregadas. La aplicación del método de coeficientes 

indeterminados no siempre nos permite encontrar el ‘punto fijo’ del sistema lineal de expectativas 

racionales. El método de iteración de expectativas es idóneo para una simple ecuación en diferencias 

estocástica. Así mismo, la solución de los modelos DSGE es insuperable en tanto mayor sea el número de 

ecuaciones no-lineales. Si bien podemos transformar el modelo DSGE y obtener un sistema lineal de 

ecuaciones en diferencias estocásticas no significa que sea posible conseguir una solución cerrada, de 

manera que tarde o temprano debemos buscar una solución numérica. 

Los métodos de Blanchard-Khan (1980) y Klein (2000) son dos procedimientos numéricos idóneos 

para la resolución de sistemas lineales de expectativas racionales4. Las dos técnicas nos permiten desacoplar 

la porción ‘estable’ de las variables de estado de la parte ‘inestable’ de las variables de control5. Los métodos 

de estimación de parámetros son muy variados, mientras que la calibración es una técnica de valoración de 

parámetros. Con todo, en la calibración no siempre se asignan valores a los parámetros para ajustarse a los 

datos observados. Siguiendo a Franke (2017), más bien, los valores de los parámetros se toman de fuentes 

 
1 La metodología DSGE se expone en numerosas publicaciones, algunos textos que cubren sus aspectos más elementales son: 

Benassy (2011), Heijdra (2017), Torres (2015), Wickens (2012) y Williamson (2018), entre otros. 
2 Véase, por ejemplo, Benigno (2015), Bofinger et al., (2006), Carlin & Soskice (2005), Fane (1985), Fontana-Setterfield (2009), 

Kerr-King (1996), Koenig (1993a, b), Lizarazu (2014), McCallum-Nelson (1999), Nelson (2008), Romer (2000). 
3 Costa & García-Cintado (2018) plantean un debate pedagógico respecto a la pertinencia de enseñar los modelos DSGE a nivel 

pregrado. 
4 Anderson (2008) proporciona evidencia de la precisión y velocidad computacional de rutinas alternativas en Matlab. 
5 Un método diferente para calcular las expectativas racionales de las variables endógenas es mediante proyecciones lineales de 

variables observables Este es el método que usa Sargent (1991) para resolver un modelo de información imperfecta. 



Lizarazu, Solución numérica de un modelo neokeynesiano mediante los métodos Blanchard-Khan (1980) y Klein (2000)          87 

 

 

externas para simular las sendas temporales de las ‘variables de control’. La estimación estadística y la 

calibración de los parámetros son aspectos que están más allá de este escrito. 

El artículo está organizado en cuatro secciones. En la primera sección se esboza el modelo 

neokeynesiano de expectativas racionales. En la segunda y tercera secciones se desarrolla el álgebra 

matricial de los métodos de Blanchard-Khan (1980) y Klein (2000), respectivamente. Además, se muestra 

cómo desacoplar el sistema lineal de expectativas racionales en función de sus valores propios. En la cuarta 

sección se expone la solución numérica del sistema mediante la forma canónica de Jordan y la 

descomposición de Schur. Las particiones de estas matrices permiten después calcular las funciones 

impulso-respuesta para trazar la dinámica de las variables endógenas. Por último, se presentan las 

conclusiones. 

 
I. UN MODELO NEOKEYNESIANO DE EXPECTATIVAS RACIONALES 

 

Los modelos neokeynesianos han probado su utilidad en el análisis de la dinámica macroeconómica y diseño 

de reglas de política monetaria6. Esta clase de modelos constan principalmente de tres ecuaciones: (1) una 

ecuación de demanda agregada, en la forma de una ecuación IS inter temporal; (2) una ecuación de inflación 

asociada a la nueva curva de Phillips; y (3) una regla de Taylor, que describe el proceso de conducción de 

la política monetaria del banco central7. 

El modelo neokeynesiano de expectativas racionales podría incorporar especificaciones híbridas de 

las curvas IS y Phillips debido a la persistencia de algunas series de tiempo. Sin embargo, es práctico lidiar 

directamente con las variables no-predeterminadas (variables de control). Pero, por otro lado, los métodos 

de solución para esta clase de modelos no son de conocimiento de todos, por lo que es necesario una 

ilustración numérica del problema. Por tal motivo, consideremos el siguiente modelo neokeynesiano de 

expectativas racionales8:  

 

𝜋𝑡 = 𝛽𝐸𝑡𝜋𝑡+1 + 𝜅(𝑦𝑡 − 𝑦̅𝑡),     𝛽 ∈ (0,1), 𝜅 > 0 (1) 

𝑦𝑡 = 𝐸𝑡𝑦𝑡+1 − 𝜎(𝑖𝑡 − 𝐸𝑡𝜋𝑡+1),     𝜎 > 0 (2) 

𝑖𝑡 = 𝜃𝜋𝑡,   𝜃 > 1 (3) 

𝑦̅𝑡+1 = 𝜌𝑦̅𝑡 + 𝜖𝑡+1,    𝜌 ∈ (−1,1), 𝜖𝑡+1~𝑁(0, 𝜎𝜖
2) (4) 

𝐸𝑡𝑦𝑡+1 = 𝐸(𝑦𝑡+1|Ω𝑡) (5) 

𝐸𝑡𝜋𝑡+1 = 𝐸(𝜋𝑡+1|Ω𝑡) (6) 

 

Antes de proseguir, es provechoso tomar en cuenta la simbología de las variables de acuerdo con el 

cuadro 1. 

  

 
6 Clarida, et al. (1999), Woodford (2003) y Walsh (2003) son algunas referencias para transitar a la frontera de la macroeconomía 

y la política monetaria óptima, incluyendo, por ejemplo, agentes heterogéneos. 
7 Una referencia directa de este modelo es Poutineau, et al. (2015). 
8 La estructura algebraica es resultado de la fundamentación microeconómica DSGE y la log-linealización de las condiciones de 

primer orden, como la ecuación de Euler. 
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Cuadro 1 

Simbología de las variables 

𝑖𝑡: Tasa de interés nominal para el período 𝑡 

𝑦𝑡: Producto real para el período 𝑡 

𝑦̅𝑡: Producto potencial real para el período 𝑡 

𝜋𝑡: Tasa de inflación para el período 𝑡 

𝐸𝑡𝑦𝑡+1: Expectativas del producto real para el período 𝑡 + 1 

𝐸𝑡𝜋𝑡+1: Expectativas de inflación para el período 𝑡 + 1 

𝜖𝑡+1: Choque del producto potencial en el período 𝑡 + 1 

Fuente: Elaboración propia 

 

En su mayoría las diferentes variables son transformaciones logarítmicas de las variables originales. 

La excepción es la tasa de interés nominal, la cual se mide de la forma tradicional. 

Además, el significado de los seis parámetros se anota en el cuadro 2. 

 

Cuadro 2 

Simbología de los parámetros 

𝛽: 
Tasa de descuento por parte de las empresas fijadoras 

de precios 

𝜃: 
Sensibilidad de la política monetaria a la tasa de 

inflación 

𝜅: Grado de rigidez de precios 

𝜎: Grado de sustitución inter temporal 

𝜌: Grado de inercia en el producto potencial 

𝜎𝜖
2: Varianza del choque de oferta agregada en el período 𝑡 

Fuente: Elaboración propia 

 

La ecuación (1) es la nueva curva de Phillips de expectativas aumentadas. Esta expresión establece 

que la tasa de inflación es una función positiva de las expectativas de inflación futura y acepta la existencia 

de una relación positiva entre la tasa de inflación y la brecha de la producción (medido por la diferencia 

entre el producto actual y natural).  

 

La ecuación (2) denota a la nueva ecuación IS caracterizada por su dependencia positiva de las 

expectativas de producción futura y por su relación inversa con la tasa de interés real. Esta última es la 

diferencia de la tasa de interés nominal y las expectativas de inflación futura. La ecuación (3) es la regla 

monetaria que sigue el banco central para conducir su política económica. Para que se cumpla el ‘principio 

de Taylor’, el banco central ajusta la tasa de interés nominal más que proporcionalmente con la tasa de 

inflación corriente. La ecuación (4) describe el comportamiento exógeno de la única variable de estado y 

establece que el producto potencial es un proceso autorregresivo estacionario, donde 𝜖𝑡+1 es un proceso 
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ruido blanco9. De esta manera, la economía está sujeta a cambios recurrentes producidos por la presencia 

de esta variable exógena estocástica. 

Por último, las ecuaciones (5) y (6) son las hipótesis de las expectativas racionales para el producto 

real y la tasa de inflación, respectivamente10. La expectativa subjetiva es igual a la expectativa condicional, 

donde Ω𝑡 es el conjunto de información. Es decir, los agentes tienen la información suficiente para tomar 

decisiones consecuentes. 

El cuadro 3 contiene la clasificación de las variables endógenas y exógenas. Esta es una etapa 

imprescindible en el análisis económico, ya que, muchas veces, se cometen errores trascendentales por no 

clasificar a las variables del modelo adecuadamente. 

 

Cuadro 3 

Clasificación de variables en el período 𝒕 

Endógenas: 𝑖𝑡 , 𝑦𝑡 , 𝑦̅𝑡 , 𝜋𝑡, 𝐸𝑡𝑦𝑡+1, 𝐸𝑡𝜋𝑡+1 

Endógenas rezagadas 𝑦̅𝑡−1 

Exógenas: 𝜖𝑡+1 

Parámetros: 𝛽, 𝜃, 𝜅, 𝜎, 𝜌, 𝜎𝑢
2 

Fuente: Elaboración propia 

 

La segunda etapa del análisis consiste en la deducción de las formas reducidas para las variables 

endógenas. Sin embargo, a diferencia de los modelos tradicionales, en este modelo macroeconómico, 

existen dos tipos de variables endógenas: las predeterminadas (variables de estado) y las no-predeterminadas 

(variables de control)11.  

A fin de identificar estas dos clases de variables es útil representar matricialmente el modelo en la 

forma de un sistema lineal de expectativas racionales. En consecuencia, sustituimos (3) en (2), y el resultado 

junto a las ecuaciones (1) y (4), implican un sistema lineal de ecuaciones en diferencias estocástico. 

 

[
1 0 0
0 𝛽 0
0 𝜎 1

] [

𝑦̅𝑡+1

𝐸𝑡𝜋𝑡+1

𝐸𝑡𝑦𝑡+1

] = [
𝜌 0 0
𝜅 1 −𝜅
0 𝜎𝜃 1

] [

𝑦̅𝑡

𝜋𝑡

𝑦𝑡

] + [
1
0
0
] 𝜖𝑡+1 (7) 

 

La separación de las variables predeterminadas de las variables no-predeterminadas es inmediata. 

𝐴0 [
xt+1
1

Etxt+1
2 ] = 𝐴1 [

xt
1

xt
2] + 𝐴2𝜖𝑡+1 (8) 

 

  

 
9 Un proceso estocástico ruido blanco está caracterizado por su media cero y su varianza constante. Muchas distribuciones de 

probabilidad encajan en esta clase de proceso estocástico.  
10 Siguiendo a Snowdon-Vane (2005), la versión débil de las expectativas racionales comunica la idea de usar eficientemente la 

información disponible, mientras que la versión fuerte se expresa en términos de expectativas condicionales al conjunto de 

información. 
11 Para Blanchard-Khan (1980) una variable predeterminada satisface la propiedad xt+1

1 = 𝐸𝑡xt+1
1 , mientras que una variable no-

predeterminada cumple con la ecuación, xt+1
2 = 𝐸𝑡xt+1

2 + 𝜂𝑡+1, donde 𝜂𝑡+1 denota un error de expectativas. Por su parte, Buiter 

(1982) sostiene que xt
2 es una variable no-predeterminada si es función de expectativas de variables endógenas y/o exógenas futuras. 
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donde,  

𝐴0 = [
1 0 0
0 𝛽 0
0 𝜎 1

],   𝐴1 = [
𝜌 0 0
𝜅 1 −𝜅
0 𝜎𝜃 1

],   𝐴2 = [
1
0
0
] 

 

Es decir, en este sistema lineal de expectativas racionales, xt
1 representa a la única variable de estado 

o predeterminada (escalar) 𝑦̅𝑡, mientras que xt
2 es un vector de dos entradas para variables de control o no-

predeterminadas. La primera entrada es 𝐸𝑡𝜋𝑡+1 y la segunda es 𝐸𝑡𝑦𝑡+1. La inversa de la matriz 𝐴0 es 

 

𝐴0
−1 =

[
 
 
 
 
1 0 0

0
1

𝛽
0

0 −
𝜎

𝛽
1
]
 
 
 
 

 

 

Al multiplicar, ambos lados de (8), por la inversa de matriz 𝐴0 obtenemos: 

 

[
xt+1
1

𝐸𝑡xt+1
2 ] = 𝐴 [

xt
1

xt
2] + 𝐵𝜖𝑡+1 (9) 

 

donde, 𝐴 = 𝐴0
−1𝐴1 y 𝐵 = 𝐴0

−1𝐴2, es decir 

 

𝐴 =

[
 
 
 
 
 

𝜌 0 0
𝜅

𝛽

1

𝛽
−

𝜅

𝛽

−
𝜅𝜎

𝛽

𝜎(𝛽𝜃 − 1)

𝛽

𝛽 + 𝜅𝜎

𝛽 ]
 
 
 
 
 

,    𝐵 =

[
 
 
 
 
1 0 0

0
1

𝛽
0

0 −
𝜎

𝛽
1
]
 
 
 
 

[
1
0
0
] = [

1
0
0
] 

 

La estabilidad del sistema de ecuaciones depende de los valores propios de la matriz implicada. A 

este respecto, las raíces del polinomio característico vienen dados por la ecuación 

f(λ) = det(λI − A) = det

(

  
 

λ − ρ 0 0

−
κ

β
λ −

1

β

κ

β

κσ

β

σ(1 − βθ)

β
λ −

β + κσ

β )

  
 

 

Por lo tanto, 

(λ − ρ) (λ2 −
1 + β + κσ

β
λ +

1 + θκσ

β
) = 0 

 

De este modo, una de las raíces es λ1 = ρ, pero las otras dos se obtienen de la fórmula de la ecuación 

cuadrática. 

 

λ2,3 =
1

2
{
1 + β + κσ

β
± √(

1 + β + κσ

β
)
2

− 4(
1 + θκσ

β
)} 
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Como una de las raíces es ρ, entonces al menos un valor propio (en valor absoluto) es inferior a la 

unidad. Sin embargo, no es fácil establecer analíticamente si las otras dos raíces son mayores o menores a 

la unidad. En consecuencia, es mejor proceder en términos numéricos a partir de valores de los parámetros. 

Entre los procedimientos de resolución numérica están los métodos Blanchard-Khan (1980) y Klein (2000). 

El primero está cimentado en la formulación canónica de Jordan, mientras que el segundo descansa en la 

descomposición de Schur. 

 

II. EL MÉTODO BLANCHARD-KHAN  

 

Blanchard y Kahn (1980) desarrollan un método de solución para sistemas lineales de ecuaciones 

en diferencias estocásticas de primer orden. Como se mencionó más arriba, estas ecuaciones encajan con 

los ‘modelos lineales de expectativas racionales’.  

 

[
𝑥𝑡+1

1

𝐸𝑡𝑥𝑡+1
2 ] = 𝐴 [

𝑥𝑡
1

𝑥𝑡
2] + 𝐵𝜖𝑡+1 (10) 

donde,  

 

▪ 𝑥𝑡+1
1  es un vector 𝑛1 × 1 de variables predeterminadas endógenas con la propiedad 𝐸𝑡𝑥1𝑡+1 = 𝑥1𝑡+1  

▪ 𝑥𝑡+1
2  es un vector 𝑛2 × 1 de variables no-predeterminadas endógenas con la propiedad 𝑥𝑡+1

2 =

𝐸𝑡𝑥𝑡+1
2 + 𝜂𝑡+1, donde 𝜂𝑡+1 es un error de expectativa. 

▪ 𝜖𝑡+1 es una variable exógena estocástica (escalar). 

 

Si la matriz A es de rango completo, podemos usar el método de la ‘forma canónica de Jordan’. A 

este respecto, siguiendo a Weintraub (2009), acudimos a la siguiente proposición: 

 

Proposición 1. Sea A una matriz cuadrada n × n invertible. Entonces existe una matriz J que es una 

forma canónica de Jordan, y una matriz P invertible, ambas n × n, tales que 

 

𝐴 = 𝑃−1𝐽𝑃 

 

donde, J es una matriz diagonal con los valores propios de la matriz A ordenados de forma 

creciente12. 

 

𝐽 = [
𝐽1 0
0 𝐽2

] 

 

Los valores propios en J1 están en el círculo unitario (valores propios estables) y los valores propios 

en J2 están fuera el círculo unitario (valores propios inestables). La matriz P contiene a los vectores propios 

ordenados de forma conveniente (igual que la matriz o vector B). 

 

𝑃 = [
𝑃11 𝑃12

𝑃21 𝑃22
],    𝐵 = [

𝐵1

𝐵2
] 

 

Ahora bien, nos referimos a la proposición de Blanchard-Khan (1980, p. 1308) 

 
12 Se dice que la matriz J tiene una estructura diagonal si la multiplicidad de los valores propios es igual a la unidad. La multiplicidad 

es el número de veces que se repite algún valor propio en la matriz implicada.  
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Proposición 2. El sistema de ecuaciones en diferencias lineal estocástica de primer orden (10) tiene 

una solución única y de trayectoria ‘punto de silla’ estable, si el número de valores propios mayores a la 

unidad es igual al número de variables no-predeterminadas. Si el número de valores propios inestables 

excede el número de variables no-predeterminadas, no existe solución. Si el número de valores propios 

inestables es menor a la cantidad de variables no-predeterminadas, hay infinitas soluciones.  

La proposición anterior se podría también reformular en términos de los valores propios inferiores 

a la unidad. Por ejemplo, se asegura la unicidad y estabilidad de una solución de expectativas racionales si 

el número de valores propios inestables es igual al número de variables predeterminadas. 

 

Dados los dos teoremas anteriores, reescribimos (10) como 

 

[
𝑥𝑡+1

1

𝐸𝑡𝑥𝑡+1
2 ] = 𝑃−1𝐽𝑃 [

𝑥𝑡
1

𝑥𝑡
2] + 𝐵𝜖𝑡+1 (11) 

 

Al multiplicar por la matriz P tenemos 

 

[
𝑥𝑡+1

1

𝐸𝑡𝑥̂𝑡+1
2 ] = [

𝐽1 0
0 𝐽2

] [
𝑥𝑡

1

𝑥𝑡
2] + [

𝐵̂1

𝐵̂2

] 𝜖𝑡+1 (12) 

 

donde, por definición  

 

[
𝑥𝑡

1

𝑥𝑡
2] = [

𝑃11 𝑃12

𝑃21 𝑃22
] [

𝑥𝑡
1

𝑥𝑡
2]     [

𝐵̂1

𝐵̂2

] = [
𝑃11 𝑃12

𝑃21 𝑃22
] [

𝐵1

𝐵2
] 

 

Con esta transformación el sistema de ecuaciones se ‘desacopla’ en el sentido de que las variables 

no-predeterminadas están relacionadas únicamente con los valores propios inestables (superiores a la 

unidad) de la matriz J2 y las variables predeterminadas están asociadas con los valores propios estables 

(inferiores a la unidad) de la matriz J1.  

 

En lo que sigue se mostrará que la solución de las variables no-predeterminadas se deduce por 

iteración hacia adelante y la solución de las variables predeterminadas se obtiene por iteración hacia atrás. 

Comencemos por el ‘bloque inferior’ de la ecuación (12), el cual contiene a las variables no-

predeterminadas. Para proceder con los cálculos, es importante recordar que el vector B2 tiene entradas igual 

a cero. Esto es una implicación de la especificación del modelo neokeynesiano. Bajo esta premisa, se obtiene 

la ecuación: 

 

𝑥𝑡
2 = 𝐽2

−1𝐸𝑡𝑥̂𝑡+1
2 − 𝐽2

−1𝑃21𝐵1𝜖𝑡+1 (13) 

 

Se adelanta un período de tiempo esta ecuación. 

 

𝑥𝑡+1
2 = 𝐽2

−1𝐸𝑡+1𝑥̂𝑡+2
2 − 𝐽2

−1𝑃21𝐵1𝜖𝑡+2 (14) 
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Se calcula su esperanza matemática, y se recurre a la ley de expectativas iteradas, a sabiendas de 

que ϵt+2 es un proceso ruido blanco.13 

 

𝐸𝑡𝑥̂𝑡+1
2 = 𝐽2

−1𝐸𝑡𝑥̂𝑡+2
2  (15) 

 

Al sustituir (15) en (13) se tiene 

 

𝑥𝑡
2 = 𝐽2

−2𝐸𝑡𝑥̂𝑡+2
2 − 𝐽2

−1𝑃21𝐵1𝜖𝑡+1 (16) 

 

Como J2 contiene valores propios fuera del círculo unitario, iteraciones hacia adelante implican que 

J2
−n se desvanezca asintóticamente. En consecuencia, se obtiene el resultado 

𝑥𝑡
2 = −𝐽2

−1𝑃21𝐵1𝜖𝑡+1 (17) 

 

En este punto conviene retomar la ecuación (12) y considerar la definición de la variable 𝑥𝑡
2, la cual 

se expresa en los términos de 

 

𝑥𝑡
2 = 𝑃21𝑥𝑡

1 + 𝑃22𝑥𝑡
2 (18) 

 

Ahora bien, se combinan las ecuaciones (17) y (18) para arribar a la siguiente ecuación: 

 

𝑥𝑡
2 = 𝑀𝑥𝑡

1 + 𝑁𝜖𝑡+1 (19) 

donde, 

𝑀 = −𝑃22
−1𝑃21 

N = −𝑃22
−1𝐽2

−1𝑃21𝐵1 

 

Como las matrices J y P están dadas, el comportamiento de las variables no-predeterminadas xt
2 

dependen entonces de las variables predeterminadas xt
1, además del término de perturbación ϵt+1. 

 

Ahora analicemos el ‘bloque superior’ de la ecuación (12), el cual contiene a las variables 

predeterminadas. Al respecto, se tiene 

 

𝑥𝑡+1
1 = 𝐽1𝑥̂𝑡

1 + 𝐵̂1𝜖𝑡+1 (20) 

 

Es conveniente considerar algunos rezagos temporales de esta ecuación. Por ejemplo, con un 

período de rezago, se tiene 

 

𝑥𝑡
1 = 𝐽1𝑥̂𝑡−1

1 + 𝐵̂1𝜖𝑡 (21) 

 

Igualmente, con dos períodos de rezagos, se tiene 

 

𝑥𝑡−1
1 = 𝐽1𝑥̂𝑡−2

1 + 𝐵̂1𝜖𝑡−1 (22) 

 

Se sustituye (22) en (21) para obtener  

 
13 La ley de expectativas iteradas establece: 𝐸𝑡𝐸𝑡+𝑗𝑥𝑡+𝑗+1 = 𝐸𝑡𝐸𝑡+𝑗𝑥𝑡+𝑗+1, es decir, lo que espero sea mañana, es lo que hoy 

supongo pasará en el futuro. 
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𝑥𝑡
1 = 𝐽1

2𝑥𝑡−2
1 + 𝐽1𝐵̂1𝜖𝑡−1 + 𝐵̂1𝜖𝑡 (23) 

 

Si continuamos iterando hacia atrás arribamos a 

 

𝑥𝑡
1 = 𝐽1

𝑛𝑥̂𝑡−𝑛
1 + ∑ 𝐽1

𝑖 𝐵̂1𝜖𝑡−𝑖

𝑛−1

𝑖=0

 (24) 

 

Como J1 contiene los valores propios en el círculo unitario, J1
n se desvanece a medida que n crece. 

Por ende, la iteración hacia atrás converge a 

 

𝑥𝑡
1 = ∑𝐽1

𝑖 𝐵̂1𝜖𝑡−𝑖

∞

𝑖=0

 (25) 

 

Ahora es conveniente regresar a la variable original 𝑥1𝑡. En términos de la ecuación (12), se tiene 

 

𝑥𝑡
1 = 𝑃11𝑥𝑡

1 + 𝑃12𝑥𝑡
2 (26) 

 

Al sustituir (26) en la ecuación (25) y después de manipular se tiene 

 

𝑥𝑡
1 = −𝑃11

−1𝑃12𝑥𝑡
2 + 𝑃11

−1 ∑𝐽1
𝑖 𝐵̂1𝜖𝑡−𝑖

∞

𝑖=0

 (27) 

 

Ahora consideremos la ecuación (12) para establecer que 𝐵̂1 = 𝑃11𝐵1, además sustituimos (19) en 

la ecuación (27) para obtener 

 

𝑥𝑡
1 = (𝑃11 − 𝑃12𝑃22

−1𝑃21)
−1𝑃12𝑃22

−1𝐽2
−1𝑃21𝐵1𝜖𝑡+1

+ (𝑃11 − 𝑃12𝑃22
−1𝑃21)

−1 ∑𝐽1
𝑖𝑃11𝐵1𝜖𝑡−𝑖

∞

𝑖=0

 
(28) 

 

Si bien esta ecuación es una solución definitiva para el conjunto de variables predeterminadas 

debido a que 𝑥𝑡
1 depende únicamente de las variables exógenas 𝜖𝑡+1 y {𝜖𝑡−𝑖}𝑖=1

∞ , también es más práctico 

deducir otra ecuación para cálculos computacionales.  

 

Con este propósito, procedemos sustituyendo (19) en la ecuación (26) para obtener 

 

𝑥𝑡
1 = (𝑃11 + 𝑃12𝑀)𝑥𝑡

1 + 𝑃12𝑁𝜖𝑡+1 (28)´ 

 

La ecuación anterior con un rezago es 

 

𝑥𝑡−1
1 = (𝑃11 + 𝑃12𝑀)𝑥𝑡−1

1 + 𝑃12𝑁𝜖𝑡 (29) 

 

Ahora bien, al sustituir (28) y (29) en la ecuación (21), pero recordando que 𝐵̂1 = 𝑃11𝐵1 se tiene 



Lizarazu, Solución numérica de un modelo neokeynesiano mediante los métodos Blanchard-Khan (1980) y Klein (2000)          95 

 

 

 

𝑥𝑡
1 = 𝐹𝑥𝑡−1

1 + 𝐺𝜖𝑡 + 𝐻𝜖𝑡+1 (30) 

donde, 

 

𝐹 = (𝑃11 − 𝑃12𝑃22
−1𝑃21)

−1𝐽1(𝑃11 − 𝑃12𝑃22
−1𝑃21) 

𝐺 = (𝑃11 − 𝑃12𝑃22
−1𝑃21)

−1(𝑃11−𝐽1𝑃12𝑃22
−1𝐽2

−1𝑃21)𝐵1 

𝐻 = (𝑃11 − 𝑃12𝑃22
−1𝑃21)

−1𝑃12𝑃22
−1𝐽2

−1𝑃21𝐵1 

 

De esta manera, la ecuación (30) nos permite establecer directamente las propiedades dinámicas de 

las variables predeterminadas. Si queremos, después, podemos inferir la dinámica de las variables no-

predeterminadas con la ayuda de la ecuación (19) y (30). 

De aquí en adelante nos abocamos a calcular las funciones impulso-respuesta sobre 𝑥1𝑡 y 𝑥2𝑡 de un 

choque exógeno en el período t. La descripción de la trayectoria dinámica desde luego exige de la existencia 

de una condición inicial para las variables predeterminadas 𝑥0
1. Si éste es conocido, entonces de la ecuación 

(30), se obtienen los siguientes efectos secuenciales:  

 
𝑥1

1 = 𝐹𝑥0
1 + 𝐺𝜖1 + 𝐻𝜖2

𝑥2
1 = 𝐹2𝑥0

1 + 𝐹𝐺𝜖1 + (𝐹𝐻 + 𝐺)𝜖2 + 𝐻𝜖3

𝑥3
1 = 𝐹3𝑥0

1 + 𝐹2𝐺𝜖1 + 𝐹(𝐹𝐻 + 𝐺)𝜖2 + (𝐹𝐻 + 𝐺)𝜖3 + 𝐻𝜖4

𝑥4
1 = 𝐹4𝑥0

1 + 𝐹3𝐺𝜖1 + 𝐹2(𝐹𝐻 + 𝐺)𝜖2 + 𝐹(𝐹𝐻 + 𝐺)𝜖3 + (𝐹𝐻 + 𝐺)𝜖4 + 𝐻𝜖5

𝑥5
1 = 𝐹5𝑥0

1 + 𝐹4𝐺𝜖1 + 𝐹3(𝐹𝐻 + 𝐺)𝜖2 + 𝐹2(𝐹𝐻 + 𝐺)𝜖3 + 𝐹(𝐹𝐻 + 𝐺)𝜖4 + (𝐹𝐻 + 𝐺)𝜖5 + 𝐻𝜖6

⋮
𝑥𝑡

1 = 𝐹𝑡𝑥0
1 + 𝐹𝑡−1𝐺𝜖1 + 𝐹𝑡−2(𝐹𝐻 + 𝐺)𝜖2 + 𝐹𝑡−3(𝐹𝐻 + 𝐺)𝜖3 + ⋯+ 𝐹(𝐹𝐻 + 𝐺)𝜖𝑡−2 + (𝐹𝐻 + 𝐺)𝜖𝑡 + 𝐻𝜖𝑡+1

 

 

Ahora es evidente la trayectoria de impactos de 𝜖1
1 sobre 𝑥𝑡

1 a lo largo del tiempo. En particular, si 

el choque se produce en el período t, los efectos desde este período hasta el período t + j, son los que se 

encuentran en la segunda columna del cuadro 4. 

 

Cuadro 4 

Función impulso respuesta 

Variable 

Impacto de un 

choque en el 

período t 

Variable 

Impacto de un 

choque en el 

período t 

𝑥𝑡
1 𝐺𝜖1 𝑥𝑡

1 𝑀𝐺𝜖1 

𝑥𝑡+1
1  𝐹𝐺𝜖1 𝑥𝑡+1

1  𝑀𝐹𝐺𝜖1 

𝑥𝑡+2
1  𝐹2𝐺𝜖1 𝑥𝑡+2

1  𝑀𝐹2𝐺𝜖1 

⋮ ⋮ ⋮ ⋮ 

𝑥𝑡+𝑗
1  𝐹𝑗−1𝐺𝜖1 𝑥𝑡+𝑗

1  𝑀𝐹𝑗−1𝐺𝜖1 

Fuente: Elaboración propia 
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Por otro lado, al considerar la ecuación (19), se llega a la conclusión que las variables no-

predeterminadas se comportan de manera proporcional a las variables predeterminadas. Esto es, como 𝑥𝑡
2 =

𝑀𝑥𝑡
1 + 𝑁𝜖𝑡+1, entonces  

 
𝑥1

2 = 𝑀𝑥1
1 + 𝑁𝜖2 = 𝑀𝐹𝑥0

1 + 𝑀𝐺𝜖1 + (𝑀𝐻 + 𝑁)𝜖2

𝑥2
2 = 𝑀𝑥2

1 + 𝑁𝜖3 = 𝑀𝐹2𝑥0
1 + 𝑀𝐹𝐺𝜖1 + 𝑀(𝐹𝐻 + 𝐺)𝜖2 + (𝑀𝐻 + 𝑁)𝜖3

𝑥3
2 = 𝑀𝑥3

1 + 𝑁𝜖4 = 𝑀𝐹3𝑥0
1 + 𝑀𝐹2𝐺𝜖1 + 𝑀𝐹(𝐹𝐻 + 𝐺)𝜖2 + 𝑀(𝐹𝐻 + 𝐺)𝜖3 + (𝑀𝐻 + 𝑁)𝜖4

𝑥4
2 = 𝑀𝑥4

1 + 𝑁𝜖5 = 𝑀𝐹4𝑥0
1 + 𝑀𝐹3𝐺𝜖1 + 𝑀𝐹2(𝐹𝐻 + 𝐺)𝜖2 + 𝑀𝐹(𝐹𝐻 + 𝐺)𝜖3 + 𝑀(𝐹𝐻 + 𝐺)𝜖4 + (𝑀𝐻 + 𝑁)𝜖5

𝑥5
2 = 𝑀𝐹5𝑥0

1 + 𝑀𝐹4𝐺𝜖1 + 𝑀𝐹3(𝐹𝐻 + 𝐺)𝜖2 + 𝑀𝐹2(𝐹𝐻 + 𝐺)𝜖3 + 𝑀𝐹(𝐹𝐻 + 𝐺)𝜖4 + 𝑀(𝐹𝐻 + 𝐺)𝜖5 + (𝑀𝐻 + 𝑁)𝜖6

⋮
𝑥𝑡

1 = 𝑀𝐹𝑡𝑥0
1 + 𝑀𝐹𝑡−1𝐺𝜖1 + 𝑀𝐹𝑡−2(𝐹𝐻 + 𝐺)𝜖2 + ⋯+ 𝑀𝐹(𝐹𝐻 + 𝐺)𝜖𝑡−1 + 𝑀(𝐹𝐻 + 𝐺)𝜖𝑡 + (𝑀𝐻 + 𝑁)𝜖𝑡+1

 

 

La trayectoria temporal de efectos de 𝜖1
1 sobre 𝑥𝑡

2 es esbozada por la cuarta columna del cuadro 4. 

De esta manera se deduce la función impulso-respuesta resultado de un choque estocástico que afecta el 

comportamiento de las variables predeterminadas y no-predeterminadas.  

 

III. EL MÉTODO DE KLEIN 

 

De acuerdo con Klein (2000), es posible hallar una solución al sistema lineal de ecuaciones en diferencias 

estocástica de primer orden a través de la descomposición Schur de las matrices involucradas. Para explicar 

este método, volvamos a considerar la ecuación matricial 

 

 𝐴0 [
𝑥𝑡+1

1

𝐸𝑡𝑥𝑡+1
2 ] = 𝐴1 [

𝑥𝑡
1

𝑥𝑡
2] + 𝐴2𝜖𝑡+1 (31) 

 

Ahora, siguiendo a Klein (2000, p. 1410) se enuncia la siguiente proposición: 

 

Proposición 3. Dadas dos matrices 𝐴0 y 𝐴1 reales de 𝑛 × 𝑛, existen matrices unitarias ortogonales 

𝑄 y 𝑍, tal que 𝑄𝑇𝐴0𝑍 es una matriz Schur real superior y 𝑄𝑇𝐴1𝑍 es una matriz triangular superior 

 

𝑄𝑇𝐴0𝑍 = 𝑆 (32) 

𝑄𝑇𝐴1𝑍 = 𝑇 (33) 

 

donde, el par de matrices (𝑆, 𝑇) se dice que tienen la forma de Schur real generalizada.  

La matriz 𝐴0 no necesariamente es de rango completo. 

 

Sea 𝑥𝑡 = (𝑥𝑡
1 𝑥𝑡

2)′ de modo que podemos realizar transformaciones a las variables originales. 

 

𝑍𝑤𝑡+1 = 𝑥𝑡+1 (34) 

𝑍𝑤𝑡 = 𝑥𝑡 (35) 

Sustituyendo (34) y (35) en (31), multiplicando por 𝑄𝑇 y luego utilizando (32) y (33), se tiene 

 

𝐴0𝑍𝑤𝑡+1 = 𝐴1𝑍𝑤𝑡 + 𝐴2𝜖𝑡+1 (36) 

𝑄𝑇𝐴0𝑍𝑤𝑡+1 = 𝑄𝑇𝐴1𝑍𝑤𝑡 + 𝑄𝑇𝐴2𝜖𝑡+1 (37) 

𝑆𝑤𝑡+1 = 𝑇𝑤𝑡 + 𝑊𝜖𝑡 (38) 
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donde,   

𝑤𝑡+1 = [
𝑠𝑡+1

𝑢𝑡+1
], 𝑤𝑡 = [

𝑠𝑡

𝑢𝑡
],  𝑊 = 𝑄𝑇𝐴2 

 

Los valores propios del sistema están en la diagonal de la matriz 𝑆−1𝑇, esto es, 

 

𝜆(𝐴0, 𝐴1) =
𝑇(𝑖, 𝑖)

𝑆(𝑖. 𝑖)
 (39) 

 

donde 𝑆(𝑖, 𝑖) y 𝑇(𝑖, 𝑖) son elementos de la diagonal principal de las matrices 𝑆 y 𝑇, respectivamente. 

Las raíces con un módulo inferior y superior a la unidad se pueden ordenar de forma creciente. 

Siguiendo esta ordenación de los valores propios, consideramos la partición de las matrices. 

 

[
𝑆11 𝑆12

0 𝑆22
] [

𝑠𝑡+1

𝑢𝑡+1
] = [

𝑇11 𝑇12

0 𝑇22
] [

𝑠𝑡

𝑢𝑡
] + [

𝑊1

𝑊2
] 𝜖𝑡+1 (40) 

 

Al multiplicar por la matriz inversa implicada, se tiene14: 

 

[
𝑠𝑡+1

𝑢𝑡+1
] = [

𝑆11
−1 −(𝑆11𝑆22)

−1𝑆12

0 𝑆22
−1 ] [

𝑇11 𝑇12

0 𝑇22
] [

𝑠𝑡

𝑢𝑡
]

+ [
𝑆11

−1 −(𝑆11𝑆22)
−1𝑆12

0 𝑆22
−1 ] [

𝑊1

𝑊2
] 𝜖𝑡+1 

(41) 

 

Al manipular se obtiene 

 

[
𝑠𝑡+1

𝑢𝑡+1
] = [

𝑆11
−1𝑇11 𝑆11

−1𝑇12 − (𝑆11𝑆22)
−1𝑆12𝑇22

0 𝑆22
−1𝑇22

] [
𝑠𝑡

𝑢𝑡
]

+ [
𝑆11

−1𝑊1 − (𝑆11𝑆22)
−1𝑆12𝑊2

𝑆22
−1𝑊2

] 𝜖𝑡+1 

(42) 

 

Si se cumple la condición de unicidad y estabilidad, entonces las entradas  𝑆11
−1𝑇11 y 𝑆22

−1𝑇22 

contienen a las raíces estables y no-estables, respectivamente. 

Se resuelve el ‘bloque inferior’ de la ecuación (42) manipulando algebraicamente. 

 

𝑆22
−1𝑇22𝑢𝑡 + 𝑆22

−1𝑊2𝜖𝑡+1 = 𝑢𝑡+1 (43) 

𝑆22
−1𝑇22𝑢𝑡 = 𝑢𝑡+1 − 𝑆22

−1𝑊2𝜖𝑡+1 (44) 

𝑇22𝑢𝑡 = 𝑆22𝑢𝑡+1 − 𝑊2𝜖𝑡+1 (45) 

𝑢𝑡 = 𝑇22
−1𝑆22𝑢𝑡+1 − 𝑇22

−1𝑊2𝜖𝑡+1 (46) 

  

 
14 En los cálculos de la inversa se puede verificar el cumplimiento de la siguiente expresión: 

 

𝑆11
−1𝑆12 − (𝑆11𝑆22)

−1𝑆12𝑆22 = 𝑆11
−1𝑆12 − 𝑆11

−1𝑆22
−1𝑆12𝑆22 = 𝑆11

−1𝑆12 − 𝑆11
−1𝑆12𝑆22

−1𝑆22 = 0 

 

La explicación reside en el hecho de 𝑆11 es una matriz 2 × 2, mientras que 𝑆22 es un escalar 1 × 1, en tanto que 𝑆12 es 

un vector 2 × 1. Similarmente, estas indicaciones aplican a las particiones 𝑇11, 𝑇12 y 𝑇22, respectivamente. 
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En este punto, reescribimos la ecuación (4.16) para los primeros tres períodos de tiempo. 

 

𝑢𝑡+1 = 𝑇22
−1𝑆22𝑢𝑡+2 − 𝑇22

−1𝑊2𝜖𝑡+2 (47) 

𝑢𝑡+2 = 𝑇22
−1𝑆22𝑢𝑡+3 − 𝑇22

−1𝑊2𝜖𝑡+3 (48) 

𝑢𝑡+3 = 𝑇22
−1𝑆22𝑢𝑡+4 − 𝑇22

−1𝑊2𝜖𝑡+4 (49) 

 

Al sustituir (47) en la ecuación (46), y después de realizar el mismo ejercicio con (48) y (49) en el 

resultado previamente calculado, se obtiene 

 

𝑢𝑡 = (𝑇22
−1𝑆22)

4𝑢𝑡+4

− 𝑇22
−1[(𝑆22𝑇22

−1)3𝑊2𝜖𝑡+4+(𝑆22𝑇22
−1)2𝑊2𝜖𝑡+3 + (𝑆22𝑇22

−1)𝑊2𝜖𝑡+2

+ 𝑊2𝜖𝑡+1] 

(50) 

 

Si el sistema es estable, entonces el lim
𝑘⟶∞

(𝑇22
−1𝑆22)

𝑘 = 0, por lo que, si se sigue iterando hacia 

adelante, se obtiene una solución para las variables predeterminadas. 

 

𝑢𝑡 = −𝑇22
−1 ∑(𝑆22𝑇22

−1)𝑘𝑊2𝜖𝑡+𝑘+1

∞

𝑘=0

 (51) 

 

En el caso de que 𝑘 = 0 capturamos disturbios para el período 𝑡 + 1. En este caso especial, la 

ecuación anterior se reduce a 

 

𝑢𝑡 = −𝑇22
−1𝑊2𝜖𝑡+1 (52) 

 

Ahora bien, analicemos el ‘bloque superior’ de la ecuación (42), del cual se puede desglosar la 

expresión: 

 

𝑠𝑡+1 = 𝑆11
−1𝑇11𝑠𝑡 + [𝑆11

−1𝑇12 − (𝑆11𝑆22)
−1𝑆12𝑇22]𝑢𝑡

+ [𝑆11
−1𝑊1 − (𝑆11𝑆22)

−1𝑆12𝑊2]𝜖𝑡+1 
(53) 

 

Sustituyendo (52) en (53) se obtiene: 

 

𝑠𝑡+1 = 𝑆11
−1𝑇11𝑠𝑡 + [𝑆11

−1𝑊1 − 𝑆11
−1𝑇12𝑇22

−1𝑊2]𝜖𝑡+1 (54) 

 

Por otro lado, al considerar (35) y (36), se tiene: 

 

[
𝑍11 𝑍12

𝑍21 𝑍22
] [

𝑠𝑡

𝑢𝑡
] = [

𝑥𝑡
1

𝑥𝑡
2] (55) 

[
𝑍11 𝑍12

𝑍21 𝑍22
] [

𝑠𝑡+1

𝑢𝑡+1
] = [

𝑥𝑡+1
1

𝑥𝑡+1
2 ] (56) 
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De esta manera, en los períodos 𝑡 y 𝑡 + 1, el valor de la variable predeterminada se relaciona 

respectivamente con 𝑠𝑡, 𝑢𝑡, 𝑠𝑡+1 y 𝑢𝑡+1. 

 

𝑥𝑡
1 = 𝑍11𝑠𝑡 + 𝑍12𝑢𝑡 (57) 

𝑥𝑡+1
1 = 𝑍11𝑠𝑡+1 + 𝑍12𝑢𝑡+1 (58) 

 

Si los agentes no esperan ningún disturbio futuro después del período 𝑡 + 1, es decir, 𝜖𝑡+𝑘 = 0 para 

toda 𝑘 > 1, entonces las dos ecuaciones implicadas se reducen a 

 

𝑠𝑡 = 𝑍11
−1𝑥𝑡

1 + 𝑍11
−1𝑍12𝑇22

−1𝑊2𝜖𝑡+1 (59) 

𝑠𝑡+1 = 𝑍11
−1𝑥𝑡+1

1  (60) 

 

Reemplazando estas dos últimas ecuaciones en (54) manipulamos para obtener 

 

𝑍11
−1𝑥𝑡+1

1 = 𝑆11
−1𝑇11[𝑍11

−1𝑥𝑡
1 + 𝑍11

−1𝑍12𝑇22
−1𝑊2𝜖𝑡] + [𝑆11

−1𝐷1 − 𝑆11
−1𝑇12𝑇22

−1𝑊2]𝜖𝑡+1 (61) 

 

Es decir, 

 

𝑥𝑡+1
1 = 𝐹𝑥𝑡

1 + 𝐺𝜖𝑡+1 (62) 

 
donde, 

 𝐹 = 𝑍11𝑆11
−1𝑇11𝑍11

−1 

𝐺 = 𝑍11𝑆11
−1𝑊1 + (𝑍11𝑆11

−1𝑇11𝑍11
−1𝑍12𝑇22

−1 − 𝑍11𝑆11
−1𝑇12𝑇22

−1)𝑊2 

 

Consideremos otra vez el ‘bloque inferior’ de la ecuación (55).  

 

𝑥𝑡
2 = 𝑍21𝑠𝑡 + 𝑍22𝑢𝑡 (63) 

 

Ahora podemos sustituir (52) y (59) en la ecuación anterior y encontrar el resultado. 

 

𝑥𝑡
2 = 𝑀𝑥𝑡

1 + 𝑁𝜖𝑡+1 (64) 

 

donde, 

 𝑀 = 𝑍21𝑍11
−1 

𝑁 = 𝑍21𝑍11
−1𝑍12𝑇22

−1𝑊2 − 𝑍22𝑇22
−1𝑊2 

 

De esta manera, se tiene una solución para las variables predeterminas y no-predeterminadas. La 

primera se manifiesta en la ecuación (62) y la segunda se expresa por medio de la ecuación (64). 
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Por último, calculemos las funciones impulso-respuesta para cada clase de variables. En el caso de 

las variables-predeterminadas podemos calcular 

 
𝑥1

1 = Fx0
1 + Gϵ1

𝑥2
1 = Fx1

1 + Gϵ2 = F(Fx0
1 + Gϵ1) + Gϵ2 = F2x0

1 + 𝐹Gϵ1 + Gϵ2

𝑥3
1 = Fx2

1 + Gϵ3
1 = F(F2x0

1 + 𝐹Gϵ1 + Gϵ2) + Gϵ3 = F3x0
1 + 𝐹2Gϵ1 + 𝐹Gϵ2 + Gϵ3

⋮
xt

1 = Ft𝑥0
1 + Ft−1Gϵ1 + Ft−2Gϵ2 + ⋯+ F2Gϵt−2 + 𝐹Gϵt−1 + Gϵt

 

 

Similarmente, para las variables no-predeterminadas se tiene 

 
𝑥1

2 = 𝑀𝑥1
1 + Nϵ2 = 𝑀(Fx0

1 + Gϵ1) + Nϵ2 = MFx0
1 + MGϵ1 + Nϵ2

𝑥2
2 = 𝑀𝑥2

1 + Nϵ3 = 𝑀(F2𝑥0
1 + 𝐹Gϵ1 + Gϵ2) + Nϵ3 = 𝑀F2𝑥0

1 + M𝐹Gϵ1 + MGϵ2 + Nϵ3

𝑥3
2 = 𝑀𝑥3

1 + Nϵ4 = 𝑀(F3𝑥0
1 + 𝐹2Gϵ1 + 𝐹Gϵ2 + Gϵ3) + Nϵ4 = 𝑀F3𝑥0

1 + 𝑀𝐹2Gϵ1 + 𝑀𝐹Gϵ2 + 𝑀Gϵ3 + Nϵ4

⋮
xt

2 = 𝑀𝐹𝑡𝑥0
1 + 𝑀𝐹𝑡−1Gϵ1 + ⋯+ 𝑀𝐹2Gϵt−2 + M𝐹Gϵt−1 + MGϵt + Nϵt

 

 
A fin de sintetizar, los valores de la función impulso-respuesta se esbozan en el cuadro 5.  

 

Cuadro 5 

Función impulso respuesta 

Variable 
Impacto de un choque 

en el período t 
Variable 

Impacto de un choque 

en el período t 

xt
1 Gϵt xt

2 HGϵ1 

xt+1
1  𝐹𝐺ϵt xt+1

2  MFGϵ1 

xt+2
1  F2Gϵt xt+2

2
 𝑀𝐹2Gϵ1 

⋮ ⋮ ⋮ ⋮ 

xt+j
1  Fj−1Gϵt xt+j

2
 𝑀𝐹𝑗−1Gϵ1 

Fuente: Elaboración propia   

 

La trascendencia de las funciones impulso-respuesta será evidente en las simulaciones 

numéricas de la siguiente sección. 

 

IV. SIMULACIONES DE LAS FUNCIONES IMPULSO-RESPUESTA  

 
En esta sección se presentan las simulaciones numéricas de las funciones impulso-respuesta para el modelo 

neokeynesiano de expectativas racionales esbozado en la segunda sección de este artículo. Las simulaciones 

numéricas ilustran la equivalencia de los métodos Blanchard-Khan y Klein. Desde luego, los resultados 

muestran pequeñas diferencias despreciables entre los dos enfoques. Por consiguiente, el usuario debe 

decidir el método de su preferencia en función de sus recursos computacionales. 

En los cálculos para la simulación numérica se proponen dos conjuntos de parámetros calibrados15. 

 

  

 
15 Walsh (2003, p. 248) reporta algunos valores de los parámetros semejantes a los aquí simulados. La calibración de los parámetros 

es una cuestión de distinta naturaleza a la econometría. 
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Cuadro 6 

Calibración de los parámetros 

Caso A Caso B 

𝛽 = 0.7 𝛽 = 0.7 

𝜃1 = 0.8 𝜃2 = 1.1 

𝜎 = 0.8 𝜎 = 0.8 

𝜌 = 0.7 𝜌 = 0.7 

𝜅 = 0.086 𝜅 = 0.086 

Fuente: Elaboración propia. 

 
El primer conjunto de datos (en el cuadro 6) muestra el caso de un banco central que respeta el 

‘principio de Taylor’ al conducir su política monetaria. El parámetro 𝜃1 es el coeficiente de la regla de la 

tasa de interés a la inflación. Si este es inferior a la unidad, significa que el banco central sube la tasa de 

interés nominal en una cuantía inferior al aumento en la tasa de inflación. Si bien la matriz 𝐴 es de rango 

completo, tenemos dos raíces estables y otra que supera la unidad. 

 

𝐴 = 𝐴0
−1𝐴1 =

[
 
 
 
 
 

𝜌 0 0
𝜅

𝛽

1

𝛽
−

𝜅

𝛽

−
𝜅𝜎

𝛽

𝜎(𝛽𝜃 − 1)

𝛽

𝛽 + 𝜅𝜎

𝛽 ]
 
 
 
 
 

= [
0.7 0 0

0.12285714 1.4285714 −0.1228571
−0.09828571 −0.5028571 1.0982857

] 

 

λ1 = 0.7;   λ2 =  0.9650132;   λ3 = 1.5618440 

 

Como el número de valores propios inestables es menor a la cantidad de variables no-

predeterminadas, hay soluciones múltiples. Es decir, no hay una única trayectoria de equilibrio. Mankiw 

(2014, p. 627), argumenta, por ejemplo, respecto a θ inferior a la unidad, que en este caso implica una 

inflación inestable. La explicación es que un incremento en la inflación se acompañaría de una caída de la 

tasa de interés real, la demanda agregada rebasaría el producto natural provocando incrementos de los 

precios sin límites16. 

 

En el segundo conjunto de valores (cuadro 1), la matriz A prácticamente es idéntica excepto por la 

entrada A32. La matriz sigue siendo de rango completo, pero ahora hay dos valores propios inestables. 

  

𝐴 = 𝐴0
−1𝐴1 =

[
 
 
 
 
 

𝜌 0 0
𝜅

𝛽

1

𝛽
−

𝜅

𝛽

−
𝜅𝜎

𝛽

𝜎(𝛽𝜃 − 1)

𝛽

𝛽 + 𝜅𝜎

𝛽 ]
 
 
 
 
 

= [
0.7 0 0

0.12285714 1.4285714 −0.1228571
−0.09828571 −0.2628571 1.0982857

] 

λ1 = 0.7;   λ2 = 1.019367;   λ3 = 1.507490 

 

 
16 Si el sistema es inestable porque el banco central no respeta el ‘principio de Taylor’, en este caso, no vale la pena realizar la 

simulación numérica. 
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En este caso, como el número de valores propios inestables es igual a la cantidad de variables no-

predeterminadas, se puede afirmar que el sistema de ecuaciones en diferencias lineal estocástica tiene una 

solución de trayectoria estable de la clase ‘punto de silla’. 

Ahora bien, el método Blanchard-Khan consiste en la descomposición de Jordan de la matriz 𝐴 =
𝑃−1𝐽𝑃. 17  Los cálculos de estas matrices dan lugar a: 

 

𝐽 = (
0.7 0 0
0 1.019367 0
0 0 1.507490

)        𝑃 = (
0.15244832 0 0

−0.05084073 0.538503 0.8383414
−0.10160759 −0.538503 0.1616586

) 

 

La partición de las matrices por clase de variables endógenas es: 

 

𝐽1 = 0.7       𝐽2 = (
1.019367 0

0 1.507490
) 

 

𝑃11 = 0.15244832       𝑃12 = (0 0)       𝑃21 = (
−0.05084073
−0.10160759

)       𝑃22 = (
0.538503 0.8383414

−0.538503 0.1616586
) 

 

De esta manera, 

 

𝐹 = (𝑃11 − 𝑃12𝑃22
−1𝑃21)

−1𝐽1(𝑃11 − 𝑃12𝑃22
−1𝑃21) = 0.7 

𝐺 = (𝑃11 − 𝑃12𝑃22
−1𝑃21)

−1(𝑃11−𝐽1𝑃12𝑃22
−1𝐽2

−1𝑃21)𝐵1 = 1 

𝐻 = (𝑃11 − 𝑃12𝑃22
−1𝑃21)

−1𝑃12𝑃22
−1𝐽2

−1𝑃21𝐵1 = 0 

 

Es decir, se tiene la siguiente ecuación en diferencia para las variables predeterminadas 

 

𝑥𝑡
1 = 0.7𝑥𝑡+1

1 + 𝜖𝑡 

Por otra parte, también se tiene: 

 

M = 𝑍21𝑍11
−1 = (

−0.1429203
0.1524483

)        𝑁 = −𝑍22𝑇22
−1𝑊2 = (

−0.08995854
0.11727458

) 

 

Es decir, la ecuación para las variables no-predeterminadas es: 

 

𝑥𝑡
2 = (

−0.1429203
0.1524483

)𝑥𝑡
1 + (

−0.08995854
0.11727458

) 𝜖𝑡+1 

 

Con la ayuda de esta última ecuación, podemos simular y graficar las funciones impulso-respuesta. 

En la Gráfica 1, la economía experimenta un choque positivo de 1% en el producto natural. La tasa de 

inflación y el producto corriente reaccionan de acuerdo con la teoría económica. Un choque positivo del 

producto natural provoca una expansión económica, aunque ésta es acompañada de una deflación de precios. 

En los siguientes 15 períodos, estas variables se ajustan de manera gradual a una situación de reposo. La 

tasa de deflación se revierte y la producción converge a su tasa natural. 

  

 
17 La descomposición de matrices se puede realizar en Matlab u otros. En este caso, se usó el software R-package. 
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Gráfica 1 

La simulación basad en el método de Blanchard-Khan 

 
Fuente: Elaboración propia 

 

Ahora realizamos cálculos con el método Klein, el cual se basa en la descomposición de 

Schur 𝑄𝑇𝐴0𝑍 = 𝑆 y 𝑄𝑇𝐴1𝑍 = 𝑇, donde 

 

𝑄 = (
0.99431810 0.0206291 0.1044316

−0.09947587 −0.1691792 0.9805524
0.03789557 −0.9853694 −0.1661658

)        𝑍 = (
0.9788566 0.1010572 0.1778404

−0.1398986 −0.3035252 0.9424971
0.1492252 −0.9474492 −0.2829698

) 

 

𝑆 = (
0.9844501 0.0765125 0.1290508

0 1.2108847 −0.5720834
0 0 0.5872209

)        𝑇 = (
0.6891151 0.04553555  0.04679024

0 1.23433598 −0.70202039
0 0  0.88522971

) 

 
  

-0.1

0.0

0.1

5 10 15 20

tiempo

va
lo
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s series

inflación

producto

Choque positivo en el producto potencial
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La partición de las matrices por la clase de variables endógenas es: 

 

𝑆11 = 0.9844501       𝑆12 = (0.0765125 0.1290508)       𝑆21 = (
0
0
)       𝑆22 = (

1.210885 −0.5720834
0 0.5872209

) 

𝑇11 = 0.6891151       𝑇12 = (0.04553555 0.04679024)       𝑇21 = (
0
0
)       𝑇22 = (

1.234336 −0.7020204
0  0.8852297

) 

 

Los valores propios del sistema se calculan mediante (𝐴0, 𝐴1) =
𝑇(𝑖,𝑖)

𝑆(𝑖.𝑖)
  y son idénticos al método anterior. 

 

𝜆1 =
0.6891151

0.9844501 
= 0.7 𝜆2 =

1.234336

1.210885 
= 1.019367 𝜆2 =

0.8852297

0.5872209 
= 1.50749 

 

De esta manera, 

 

𝐹 = 𝑍11𝑆11
−1𝑇11𝑍11

−1 = 0.7 

𝐺 = 𝑍11𝑆11
−1𝑊1 + (𝑍11𝑆11

−1𝑇11𝑍11
−1𝑍12𝑇22

−1 − 𝑍11𝑆11
−1𝑇12𝑇22

−1)𝑊2 = 1 

 

Es decir, se tiene la misma ecuación en diferencias para la variable predeterminada. 

 

𝑥𝑡
1 = 0.7𝑥𝑡+1

1 + 𝜖𝑡 

 

Además, como 

 

𝑁 = 𝑍21𝑍11
−1𝑍12𝑇22

−1𝑊2 − 𝑍22𝑇22
−1𝑊2 

M = 𝑍21𝑍11
−1 = (

−0.1429205
0.1524485

)        𝑁 = (𝑍21𝑍11
−1𝑍12𝑇22

−1 − 𝑍22𝑇22
−1)𝑊2 = (

−0.08995861
 0.11727569

) 

 

La ecuación para las variables no-predeterminadas es 

𝑥𝑡
2 = (

−0.1429205
0.1524485

)𝑥𝑡
1 + (

−0.08995861
 0.11727569

) 𝜖𝑡+1 

 

Las funciones impulso-respuesta en el caso del método de Klein se presentan en la gráfica 2. 
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Gráfica 2 

La simulación basada en el método Klein 

 
Fuente: Elaboración propia 

 
Como es evidente, los dos enfoques muestran el mismo comportamiento para las variables no-

predeterminadas. La expansión económica se acompaña de una deflación de precios. Sin embargo, otra vez, 

en los siguientes 15 períodos, la economía se ajusta gradualmente a la situación de estado estacionario. 

 

COMENTARIOS FINALES 

 

Los modelos de la disciplina invocan el esquema de expectativas racionales, negar su importancia es ‘ir 

contra el viento’. Por eso, los métodos de resolución numérica de los sistemas lineales de expectativas 

racionales son trascendentales para la macroeconomía. Existen determinados métodos de solución, uno de 

ellos es el de coeficientes indeterminados, pero éste depende en gran manera de la pericia y experiencia para 

plantear una ‘conjetura de solución’. Además, este método es ambiguo respecto a la existencia de equilibrios 

múltiples. Otro método consiste en reemplazar las expectativas por proyecciones lineales de las variables 

endógenas observables. Este método de extracción de señales aplica a una economía en la que los agentes 

interactúan con información privada. Esta técnica es avanzada y requiere de los métodos estudiados en este 

artículo. 

-0.1

0.0

0.1

5 10 15 20

tiempo

v
a

lo
re

s series

inflación

producto

Choque positivo del producto potencial

Función impulso-respuesta a la Klein



106  Análisis Económico, vol. XXXVI, núm. 92, mayo-agosto de 2021, ISSN: 0185-3937, e- ISSN: 2448-6655 

 

 

Los métodos de Blanchard-Khan y Klein son idóneos para encontrar una solución numérica para 

los sistemas lineales de expectativas racionales. En función de las raíces estables e inestables, los dos 

métodos permiten desacoplar el sistema original en dos bloques. El primero contiene al conjunto de 

variables predeterminadas y el segundo coadyuva en la resolución de las variables no-predeterminadas. La 

solución usando cualquiera de los dos métodos es idéntica, aunque el método más particular es diferente. El 

método de Klein es más robusto debido a que permite resolver sistemas lineales de expectativas racionales, 

aun cuando la matriz de ‘variables de estado y control’ sea singular. Por tal motivo, abogamos por el método 

de Klein (2000) porque permite lidiar con matrices de rango no-completo. 

El álgebra de los métodos de Blanchard-Khan y Klein se aplicó al ‘modelo neokeynesiano de 

expectativas racionales’18. Los resultados numéricos alcanzados muestran la idoneidad de estos métodos de 

solución para los modelos lineales de expectativas racionales. La simulación numérica de las funciones 

impulso-respuesta y su capacidad de predicción dinámica encaja con la teoría macroeconómica. En el 

modelo neokeynesiano de expectativas racionales que estudiamos, un incremento exógeno en el producto 

natural provoca una caída de la tasa de inflación (ecuación 1). Entonces, el banco central ajusta la tasa de 

interés en una medida propicia (ecuación 3), de modo que, la disminución de la tasa de interés real estimula 

la demanda agregada y la actividad económica (ecuación 2). Las gráficas de las funciones impulso-respuesta 

describen la dinámica de una ‘transición suave’ de la economía hacia una situación de reposo. Es decir, la 

tasa de inflación y la brecha de producción real experimentan saltos al principio, pero después de algunos 

períodos, estas variables convergen a su senda de equilibrio. 

Es posible insertar otras características de la realidad a la estructura algebraica del modelo estudiado. 

El análisis cimentado en los preceptos de la teoría macroeconómica nos abre la posibilidad de integrar 

inercias de algunas variables importantes, extender la reflexión a una economía abierta, considerar la política 

monetaria óptima bajo incertidumbre, etc. Con toda seguridad, en cualquier caso, usaremos los métodos de 

resolución numérica expuestos en este artículo porque nos facilitan ganar perspicacia en la teoría 

macroeconómica. Los métodos de estimación estadística y la calibración de los parámetros son 

suplementarios en el objetivo de ‘empatar’ la simulación del modelo con los datos observados.  
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