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RESUMEN

Se utilizan los procedimientos de Blanchard-Khan (1980) y Klein (2000) para
resolver numéricamente un modelo neokeynesiano de expectativas racionales. Con
respecto a este modelo, se muestra como desacoplar el sistema lineal de expectativas
racionales dependiendo de las variables de estado (predeterminadas) y de control
(no-predeterminadas). La solucion es plausible si se conocen los pardmetros del
modelo, ademés es posible extraer las funciones impulso-respuesta para trazar la
senda temporal de las variables enddgenas impulsadas por perturbaciones de la Ginica
variable exdgena estocéstica, el producto natural.
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ABSTRACT

We use the procedures of Blanchard-Khan (1980) and Klein (2000) to numerically

solve a New Keynesian model of rational expectations. With respect to this model,

we show how to decouple the linear system of rational expectations depending on

®®® the state (predetermined) or control (non-predetermined) variables. The solution is
‘@ plausible if we know the parameters of the model, it is also possible to extract the
impulse-response functions to plot the time path of the endogenous variables driven

by disturbances of the only stochastic exogenous variable, namely the natural
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INTRODUCCION

Un aspecto de la macroeconomia moderna es la simulacion numérica de modelos de equilibrio general
dinamicos estocasticos (DSGE, por sus siglas en inglés). Estos modelos se desarrollan principalmente como
respuesta a la ‘critica de Lucas’, por lo que ahora, la macroeconomia moderna descansa en la microeconomia
inter temporal. Entre los primeros modelos DSGE, esta el de ciclos reales de Kydland-Prescott (1982) y
Long-Plosser (1983). El modelo de ciclos reales sostiene que las fluctuaciones de la economia agregada son
la respuesta eficiente a los choques tecnolégicos exdgenos e inciertost. Actualmente, académicos y
economistas profesionales en centros de investigacion y organismos oficiales usan extensamente la
metodologia DSGE?. Ademas, los modelos DSGE empiezan a integrarse en la ensefianza de la
macroeconomia a nivel pregrado, lo que exige tiempo, esfuerzo y astucia para doblegar los escollos
inherentes del proceso de ensefianza-aprendizaje®. La instruccion en los modelos DSGE es valiosa por su
trascendencia en la macroeconomia.

Este articulo es una contribucion pedag6gica porque su pretension es ilustrar la resolucién numérica
de una version log-linealizada de un modelo neokeynesiano, situado entre los paradigmas I1S-LM y DSGE.
Su anélisis descansa en un experimento provisto de un elemento generador de fluctuaciones y materializado
en un proceso estocastico exdgeno para el producto natural. De modo que el sistema econémico reacciona
a los disturbios conforme a sus ecuaciones y expectativas de las variables. En especial, admitimos que el
sistema esté en su senda de equilibrio en el periodo 0, pero experimenta un choque de oferta agregada en el
periodo 1. En los periodos 2, 3, :-+, n, el sistema se aleja de su senda de equilibrio, pero después retorna a su
estado estacionario (en los periodos n + 1,n + 2, ---). La convergencia del sistema es inevitable porque los
valores de sus parametros son seleccionados de modo que existe una solucion estable (condicién Blanchard-
Khan). El experimento no requiere del acopio de datos, sino de la aceptacion de un impulso exégeno (de
una sola vez) para trazar la senda temporal de las variables desde la perturbacion hasta su retorno al
equilibrio.

La dificultad de estos modelos reside precisamente en la manipulacion de los términos de
expectativas de las principales relaciones agregadas. La aplicacion del método de coeficientes
indeterminados no siempre nos permite encontrar el ‘punto fijo’ del sistema lineal de expectativas
racionales. EI método de iteracion de expectativas es idéneo para una simple ecuacion en diferencias
estocastica. Asi mismo, la solucion de los modelos DSGE es insuperable en tanto mayor sea el nimero de
ecuaciones no-lineales. Si bien podemos transformar el modelo DSGE y obtener un sistema lineal de
ecuaciones en diferencias estocasticas no significa que sea posible conseguir una solucién cerrada, de
manera que tarde o temprano debemos buscar una solucién numérica.

Los métodos de Blanchard-Khan (1980) y Klein (2000) son dos procedimientos numéricos idoneos
para la resolucion de sistemas lineales de expectativas racionales®. Las dos técnicas nos permiten desacoplar
la porcion ‘estable’ de las variables de estado de la parte ‘inestable’ de las variables de control®. Los métodos
de estimacion de parametros son muy variados, mientras que la calibracion es una técnica de valoracion de
parametros. Con todo, en la calibracion no siempre se asignan valores a los parametros para ajustarse a los
datos observados. Siguiendo a Franke (2017), més bien, los valores de los pardmetros se toman de fuentes

! La metodologia DSGE se expone en numerosas publicaciones, algunos textos que cubren sus aspectos mas elementales son:
Benassy (2011), Heijdra (2017), Torres (2015), Wickens (2012) y Williamson (2018), entre otros.

2 \Véase, por ejemplo, Benigno (2015), Bofinger et al., (2006), Carlin & Soskice (2005), Fane (1985), Fontana-Setterfield (2009),
Kerr-King (1996), Koenig (1993a, b), Lizarazu (2014), McCallum-Nelson (1999), Nelson (2008), Romer (2000).

3 Costa & Garcia-Cintado (2018) plantean un debate pedagdgico respecto a la pertinencia de ensefiar los modelos DSGE a nivel
pregrado.

4 Anderson (2008) proporciona evidencia de la precision y velocidad computacional de rutinas alternativas en Matlab.

5 Un método diferente para calcular las expectativas racionales de las variables enddgenas es mediante proyecciones lineales de
variables observables Este es el método que usa Sargent (1991) para resolver un modelo de informacion imperfecta.
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externas para simular las sendas temporales de las ‘variables de control’. La estimacién estadistica y la
calibracion de los parametros son aspectos que estan mas alla de este escrito.

El articulo estd organizado en cuatro secciones. En la primera seccion se esboza el modelo
neokeynesiano de expectativas racionales. En la segunda y tercera secciones se desarrolla el algebra
matricial de los métodos de Blanchard-Khan (1980) y Klein (2000), respectivamente. Ademas, se muestra
como desacoplar el sistema lineal de expectativas racionales en funcion de sus valores propios. En la cuarta
seccion se expone la solucion numérica del sistema mediante la forma candnica de Jordan y la
descomposicion de Schur. Las particiones de estas matrices permiten después calcular las funciones
impulso-respuesta para trazar la dindmica de las variables enddgenas. Por ultimo, se presentan las
conclusiones.

. UN MODELO NEOKEYNESIANO DE EXPECTATIVAS RACIONALES

Los modelos neokeynesianos han probado su utilidad en el anélisis de la dindmica macroecondmicay disefio
de reglas de politica monetaria®. Esta clase de modelos constan principalmente de tres ecuaciones: (1) una
ecuacién de demanda agregada, en la forma de una ecuacién IS inter temporal; (2) una ecuacién de inflacién
asociada a la nueva curva de Phillips; y (3) una regla de Taylor, que describe el proceso de conduccion de
la politica monetaria del banco central’.

El modelo neokeynesiano de expectativas racionales podria incorporar especificaciones hibridas de
las curvas IS y Phillips debido a la persistencia de algunas series de tiempo. Sin embargo, es practico lidiar
directamente con las variables no-predeterminadas (variables de control). Pero, por otro lado, los métodos
de solucidon para esta clase de modelos no son de conocimiento de todos, por lo que es necesario una
ilustracién numérica del problema. Por tal motivo, consideremos el siguiente modelo neokeynesiano de
expectativas racionales®:

e = PEme1 + k(e — ), B E(01),k>0 1)
Ve = EtYey1 —0(iy — EtTeyq), >0 (2)

iy =0m, 6>1 3

Yer1 = PYe + €cs1, P € (=1,1),€001~N(0,02) 4)
Eyerr = E(Ves11Q) )

Eimteyq = E(eq1|Q) (6)

Antes de proseguir, es provechoso tomar en cuenta la simbologia de las variables de acuerdo con el
cuadro 1.

6 Clarida, et al. (1999), Woodford (2003) y Walsh (2003) son algunas referencias para transitar a la frontera de la macroeconomia
y la politica monetaria dptima, incluyendo, por ejemplo, agentes heterogéneos.

" Una referencia directa de este modelo es Poutineau, et al. (2015).

8 La estructura algebraica es resultado de la fundamentacion microecondémica DSGE vy la log-linealizacion de las condiciones de
primer orden, como la ecuacion de Euler.
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Cuadro 1
Simbologia de las variables

i;: Tasa de interés nominal para el periodo t
v;. Producto real para el periodo t
y¢: Producto potencial real para el periodo t
m:: Tasa de inflacion para el periodo t
E:y:+1: Expectativas del producto real para el periodo t + 1

E:m:y1: Expectativas de inflacion para el periodo t + 1

€:+1. Choque del producto potencial en el periodo t + 1

Fuente: Elaboracion propia

En su mayoria las diferentes variables son transformaciones logaritmicas de las variables originales.
La excepcion es la tasa de interés nominal, la cual se mide de la forma tradicional.
Ademas, el significado de los seis pardmetros se anota en el cuadro 2.

Cuadro 2
Simbologia de los parametros
Tasa de descuento por parte de las empresas fijadoras

B: de precios
p
0 Sensibilidad de la politica monetaria a la tasa de
" inflacion

k: Grado de rigidez de precios
o: Grado de sustitucion inter temporal

p: Grado de inercia en el producto potencial

of: Varianza del choque de oferta agregada en el periodo t

Fuente: Elaboracion propia

La ecuacion (1) es la nueva curva de Phillips de expectativas aumentadas. Esta expresion establece
que la tasa de inflacién es una funcion positiva de las expectativas de inflacién futura y acepta la existencia
de una relacion positiva entre la tasa de inflacion y la brecha de la produccion (medido por la diferencia
entre el producto actual y natural).

La ecuacion (2) denota a la nueva ecuacion IS caracterizada por su dependencia positiva de las
expectativas de produccion futura y por su relacion inversa con la tasa de interés real. Esta dltima es la
diferencia de la tasa de interés nominal y las expectativas de inflacion futura. La ecuacion (3) es la regla
monetaria que sigue el banco central para conducir su politica econémica. Para que se cumpla el ‘principio
de Taylor’, el banco central ajusta la tasa de interés nominal mas que proporcionalmente con la tasa de
inflacién corriente. La ecuacion (4) describe el comportamiento exdgeno de la Unica variable de estado y
establece que el producto potencial es un proceso autorregresivo estacionario, donde €;,, €S un proceso
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ruido blanco®. De esta manera, la economia esta sujeta a cambios recurrentes producidos por la presencia
de esta variable exdgena estocastica.

Por ultimo, las ecuaciones (5) y (6) son las hipdtesis de las expectativas racionales para el producto
real y la tasa de inflacion, respectivamente®®. La expectativa subjetiva es igual a la expectativa condicional,
donde Q, es el conjunto de informacion. Es decir, los agentes tienen la informacion suficiente para tomar
decisiones consecuentes.

El cuadro 3 contiene la clasificacion de las variables enddgenas y exdgenas. Esta es una etapa
imprescindible en el andlisis econdmico, ya que, muchas veces, se cometen errores trascendentales por no
clasificar a las variables del modelo adecuadamente.

Cuadro 3
Clasificacion de variables en el periodo ¢

Endégenas: ir, yr, 1. t, Et Vi1, EeTrss
Endogenas rezagadas  y;_;
Exogenas: €44

Parametros: f3,0,k,0,p, 02

Fuente: Elaboracion propia

La segunda etapa del andlisis consiste en la deduccion de las formas reducidas para las variables
enddgenas. Sin embargo, a diferencia de los modelos tradicionales, en este modelo macroeconémico,
existen dos tipos de variables enddgenas: las predeterminadas (variables de estado) y las no-predeterminadas
(variables de control)*Z.

A fin de identificar estas dos clases de variables es (til representar matricialmente el modelo en la
forma de un sistema lineal de expectativas racionales. En consecuencia, sustituimos (3) en (2), y el resultado
junto a las ecuaciones (1) y (4), implican un sistema lineal de ecuaciones en diferencias estocastico.

1 0 O Ye+1 p 0 071 1
0 B O||Etmesr|=| 1 —x||Te|+|0|€s1 @)
0 o ULEyeiq 0 o6 1 Yt 0

La separacion de las variables predeterminadas de las variables no-predeterminadas es inmediata.

X%+1 X%
Ay 5 | = A1 o+ Az€rsn (8)
EeXthq Xt

9 Un proceso estocastico ruido blanco esta caracterizado por su media cero y su varianza constante. Muchas distribuciones de
probabilidad encajan en esta clase de proceso estocastico.

10 Siguiendo a Snowdon-Vane (2005), la version débil de las expectativas racionales comunica la idea de usar eficientemente la
informacion disponible, mientras que la version fuerte se expresa en términos de expectativas condicionales al conjunto de
informacion.

11 para Blanchard-Khan (1980) una variable predeterminada satisface la propiedad x{,, = E,x{,,, mientras que una variable no-
predeterminada cumple con la ecuacion, x2,; = E;xZ,; + 1:+1, donde n,,, denota un error de expectativas. Por su parte, Buiter
(1982) sostiene que xZ es una variable no-predeterminada si es funcion de expectativas de variables enddgenas y/o exdgenas futuras.
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donde,
1 0 0 p 0 0 1
Ag=10 B O0f, 4=k 1 —K], A2=O]
0 o 1 0 o6 1 0

Es decir, en este sistema lineal de expectativas racionales, x{ representa a la tinica variable de estado
o predeterminada (escalar) y,, mientras que x? es un vector de dos entradas para variables de control o0 no-
predeterminadas. La primera entrada es E;m;, 1 Y la segunda es E;y, .. La inversa de la matriz 4, es

1 0 0

0o L
At=|" B

0 —2 1

> ~5

Al multiplicar, ambos lados de (8), por la inversa de matriz A, obtenemos:

1 1
Xt+1 Xt
=A + Be 9
[EtXt2+1] [th] o ©

donde, A = Aj1A; y B = Ag'A,, es decir

p 0 0 1 0 0
x 1 K o L oolm n
5ty cid 2
_ ko o(p0—1) L+ko 0 i 1|10 0
B B B B

La estabilidad del sistema de ecuaciones depende de los valores propios de la matriz implicada. A
este respecto, las raices del polinomio caracteristico vienen dados por la ecuacién

A—p 0 0
K A 1 K
fQ) = det(l — A) = det| B B B
\K_O' o(1—pB6) )\_B+KO‘/
B B B

Por lo tanto,

=0 (}\2 3 1+ BB+ K‘.GA 4 1 +BGK0)

De este modo, una de las raices es A; = p, pero las otras dos se obtienen de la formula de la ecuacion
cuadratica.

1+B+K0i\/(1+[3+K6)2_4(1+S9K0)
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Como una de las raices es p, entonces al menos un valor propio (en valor absoluto) es inferior a la
unidad. Sin embargo, no es facil establecer analiticamente si las otras dos raices son mayores 0 menores a
la unidad. En consecuencia, es mejor proceder en términos numéricos a partir de valores de los parametros.
Entre los procedimientos de resolucion numérica estan los métodos Blanchard-Khan (1980) y Klein (2000).
El primero esta cimentado en la formulacion candnica de Jordan, mientras que el segundo descansa en la
descomposicién de Schur.

Il. EL METODO BLANCHARD-KHAN
Blanchard y Kahn (1980) desarrollan un método de solucién para sistemas lineales de ecuaciones

en diferencias estocasticas de primer orden. Como se mencion6 mas arriba, estas ecuaciones encajan con
los ‘modelos lineales de expectativas racionales’.

1
Xt+1

E, x?
tXt+1

x¢

= A 2 + B€t+1 (10)
Xt

donde,

» x},,esunvectorn; x 1 de variables predeterminadas enddgenas con la propiedad E; X141 = X1p41

= xZ,, es un vector n, x 1 de variables no-predeterminadas endogenas con la propiedad x2.; =
E/x?.1 + 1¢41, donde 1., €s un error de expectativa.

"  €:41 €S Una variable exdgena estocéstica (escalar).

Si la matriz A es de rango completo, podemos usar el método de la ‘forma canonica de Jordan’. A
este respecto, siguiendo a Weintraub (2009), acudimos a la siguiente proposicion:

Proposicion 1. Sea A una matriz cuadrada n X n invertible. Entonces existe una matriz J que es una
forma canodnica de Jordan, y una matriz P invertible, ambas n X n, tales que

A=P1P

donde, ] es una matriz diagonal con los valores propios de la matriz A ordenados de forma
creciente’?,
_Th 0]
1=[s .

Los valores propios en J; estan en el circulo unitario (valores propios estables) y los valores propios
en ], estan fuera el circulo unitario (valores propios inestables). La matriz P contiene a los vectores propios
ordenados de forma conveniente (igual que la matriz o vector B).

P, P B
-l ) ol
P21 PZZ BZ

Ahora bien, nos referimos a la proposicion de Blanchard-Khan (1980, p. 1308)

12 Se dice que la matriz J tiene una estructura diagonal si la multiplicidad de los valores propios es igual a la unidad. La multiplicidad
es el niumero de veces que se repite algln valor propio en la matriz implicada.
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Proposicion 2. El sistema de ecuaciones en diferencias lineal estocastica de primer orden (10) tiene
una solucion Unica y de trayectoria ‘punto de silla’ estable, si el nimero de valores propios mayores a la
unidad es igual al nimero de variables no-predeterminadas. Si el nimero de valores propios inestables
excede el nimero de variables no-predeterminadas, no existe solucion. Si el nimero de valores propios
inestables es menor a la cantidad de variables no-predeterminadas, hay infinitas soluciones.

La proposicion anterior se podria también reformular en términos de los valores propios inferiores
a la unidad. Por ejemplo, se asegura la unicidad y estabilidad de una solucion de expectativas racionales si
el nimero de valores propios inestables es igual al nimero de variables predeterminadas.

Dados los dos teoremas anteriores, reescribimos (10) como

1 1
[ s ] =piyp L’zg] + Béyq (11)
t

E¢xtyq

Al multiplicar por la matriz P tenemos

]
Pl B A e @2

donde, por definicion

21 1 N
Xt _ [Pll Plz] Xt By _ [Pll Plz] [31]
&2 Py1 Pyo|x? B, Py Ppl1B;
Con esta transformacion el sistema de ecuaciones se ‘desacopla’ en el sentido de que las variables
no-predeterminadas estan relacionadas Unicamente con los valores propios inestables (superiores a la

unidad) de la matriz J, y las variables predeterminadas estan asociadas con los valores propios estables
(inferiores a la unidad) de la matriz J;.

o

En lo que sigue se mostrard que la solucién de las variables no-predeterminadas se deduce por
iteracion hacia adelante y la solucién de las variables predeterminadas se obtiene por iteracién hacia atras.
Comencemos por el ‘bloque inferior’ de la ecuacion (12), el cual contiene a las variables no-
predeterminadas. Para proceder con los calculos, es importante recordar que el vector B, tiene entradas igual
a cero. Esto es una implicacion de la especificacion del modelo neokeynesiano. Bajo esta premisa, se obtiene
la ecuacion:

%¢ = J3'Et&e1 — J7 ' Py Br€rs (13)
Se adelanta un periodo de tiempo esta ecuacion.

55?+1 = fz_lEt+1ft,?+2 _]2_1P21316t+2 (14)
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Se calcula su esperanza matematica, y se recurre a la ley de expectativas iteradas, a sabiendas de
que €4, €s un proceso ruido blanco.®®

Et9?§+1 = ]2_1Et9?3+2 (15)
Al sustituir (15) en (13) se tiene
ftz :]2_2Et9?tz+2 _]2_1P21B16t+1 (16)
Como J, contiene valores propios fuera del circulo unitario, iteraciones hacia adelante implican que
J2™ se desvanezca asintéticamente. En consecuencia, se obtiene el resultado

7?? = _]2_1P21B16t+1 (17)

En este punto conviene retomar la ecuacion (12) y considerar la definicion de la variable £2, la cual
se expresa en los términos de

Xf = Pyix{ + Pyox? (18)
Ahora bien, se combinan las ecuaciones (17) y (18) para arribar a la siguiente ecuacion:
xf = Mx} + Negyq (19)
donde,
M = —P2_21P21
N = _P2_2112_1P21B1

Como las matrices ] y P estan dadas, el comportamiento de las variables no-predeterminadas x2
dependen entonces de las variables predeterminadas x{, ademas del término de perturbacion e, ;.

Ahora analicemos el ‘blogue superior’ de la ecuacion (12), el cual contiene a las variables
predeterminadas. Al respecto, se tiene

J’C\t1+1 =]15€\L} + §1€t+1 (20)

Es conveniente considerar algunos rezagos temporales de esta ecuacién. Por ejemplo, con un
periodo de rezago, se tiene

X¢ = J1%{_1 + B, (21)
Igualmente, con dos periodos de rezagos, se tiene
X¢1 = J1%i_ + Biesy (22)

Se sustituye (22) en (21) para obtener

13 La ley de expectativas iteradas establece: E¢EyyjX¢yj41 = EtEryjXesj41, €5 decir, lo que espero sea mafiana, es lo que hoy
supongo pasaré en el futuro.
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Xt = JZR{_; + J1Bi€r1 + Bie, (23)

Si continuamos iterando hacia atras arribamos a
n—-1
%= PR+ ) JiBier 24)
i=0

Como J; contiene los valores propios en el circulo unitario, J{ se desvanece a medida que n crece.
Por ende, la iteracion hacia atrds converge a

2= JiBier 25)
i=0

Ahora es conveniente regresar a la variable original x;,. En términos de la ecuacion (12), se tiene
Xf = Pyyxi + Pipxf (26)
Al sustituir (26) en la ecuacion (25) y después de manipular se tiene
x¢ = =P Pioxg + Pf1lz]i§15t—i (27)
i=0

Ahora consideremos la ecuacion (12) para establecer que B; = P;;B;, ademas sustituimos (19) en
la ecuacién (27) para obtener

xtl = (P11 — P12P2_21P21)_1P12P2_21]2_1P21£16t+1

_ _ ; 28
+ (Py; — P1oP35' Pyy) 12]{P11B1Et—i (28)

i=0
Si bien esta ecuacion es una solucion definitiva para el conjunto de variables predeterminadas
debido a que x} depende Gnicamente de las variables exdgenas €, Y {€;_;}{2;, también es mas practico
deducir otra ecuacion para célculos computacionales.
Con este propdsito, procedemos sustituyendo (19) en la ecuacién (26) para obtener
~ _ 1 ’
X = (Pyy + PioM)x; + PipNepyq (28)
La ecuacion anterior con un rezago es

Ri_1 = (P; + PioM)xi_y + PpNe, (29)

Ahora bien, al sustituir (28) y (29) en la ecuacion (21), pero recordando que B, = P, B; se tiene
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xt =Fxt i+ Ge, + Hepyq (30)
donde,

F = (Pyy — P12P33 Py1) Y1 (Py1 — P1oPostPyy)
G = (Pyy — P13P33 Py1) " (Pi1—J1 P1oPsst )3 1 Po1) By
H = (Pyy — P13P53' Pyy) " *P1y Py, 5 1 Pyy By

De esta manera, la ecuacion (30) nos permite establecer directamente las propiedades dindmicas de
las variables predeterminadas. Si queremos, después, podemos inferir la dindmica de las variables no-
predeterminadas con la ayuda de la ecuacion (19) y (30).

De aqui en adelante nos abocamos a calcular las funciones impulso-respuesta sobre x;; y x,; de un
choque exdgeno en el periodo t. La descripcion de la trayectoria dinamica desde luego exige de la existencia
de una condicidn inicial para las variables predeterminadas x3. Si éste es conocido, entonces de la ecuacion
(30), se obtienen los siguientes efectos secuenciales:

xt = Fx} + Ge, + He,
x3 = F%x} + FGey + (FH + G)e, + Heg
X3 =F3x} + F?Ge, + F(FH + G)ey + (FH + G)e3 + He,
X3 = F*x} + F3Ge, + F2(FH + G)e, + F(FH + G)e; + (FH + G)e, + Heg
x} = F5x} + F*Ge, + F3(FH + G)e, + F2(FH + G)es + F(FH + G)ey + (FH + G)es + Heg

xt = Ftx} + Ft71Ge; + FU2(FH + G)e, + FE3(FH + G)eg + -+ F(FH + G)é;_p + (FH + G)e, + Hepyq
Ahora es evidente la trayectoria de impactos de ; sobre x} a lo largo del tiempo. En particular, si

el choque se produce en el periodo t, los efectos desde este periodo hasta el periodo t + j, son los que se
encuentran en la segunda columna del cuadro 4.

Cuadro 4
Funcion impulso respuesta
Impacto de un Impacto de un
Variable choque en el Variable choque en el
periodo t periodo t
xt Geq xt MGe,
Xtiq FGe, Xtiq MFGe,
Xtio F?Ge, Xtio MF?Ge,
Xiyj Fi7lGe, Xty MFI=1Ge,

Fuente: Elaboracion propia
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Por otro lado, al considerar la ecuacién (19), se llega a la conclusién que las variables no-
predeterminadas se comportan de manera proporcional a las variables predeterminadas. Esto es, como x2 =
Mx} + Ne.,4, entonces

x? = Mx} + Ne, = MFx} + MGe, + (MH + N)e,
x% = Mx} + Ne; = MF?x} + MFGe, + M(FH + G)e, + (MH + N)es
x% = Mxi + Ne, = MF3x} + MF?Ge; + MF(FH + G)e;, + M(FH + G)e; + (MH + N)e,
x? = Mx} + Nes = MF*x} + MF3Ge, + MF?(FH + G)e;, + MF(FH + G)e; + M(FH + G)e, + (MH + N)eg
x2 = MF°x} + MF*Ge; + MF3(FH + G)e, + MF?(FH + G)e; + MF(FH + G)ey + M(FH + G)eg + (MH + N)eg

xt = MF'x} + MF*™'Ge; + MF*"2(FH + G)ey + -+ MF(FH + G)é;—y + M(FH + G)€; + (MH + N)€;yq
La trayectoria temporal de efectos de €1 sobre x? es esbozada por la cuarta columna del cuadro 4.

De esta manera se deduce la funcién impulso-respuesta resultado de un choque estocastico que afecta el
comportamiento de las variables predeterminadas y no-predeterminadas.

I1l. EL METODO DE KLEIN
De acuerdo con Klein (2000), es posible hallar una solucidn al sistema lineal de ecuaciones en diferencias

estocastica de primer orden a través de la descomposicion Schur de las matrices involucradas. Para explicar
este método, volvamos a considerar la ecuacion matricial

1
A | Fr+1
OE,x?
tXt+1

xt
=A1| S|+ Ax€rs (31)
Xt

Ahora, siguiendo a Klein (2000, p. 1410) se enuncia la siguiente proposicion:

Proposicion 3. Dadas dos matrices A, y A; reales de n X n, existen matrices unitarias ortogonales
Qy Z, tal que QT AyZ es una matriz Schur real superior y QT A, Z es una matriz triangular superior

QTA,Z =S (32)
QTA,Z=T (33)

donde, el par de matrices (S, T) se dice que tienen la forma de Schur real generalizada.
La matriz A, no necesariamente es de rango completo.

Seax; = (x} x?2)' de modo que podemos realizar transformaciones a las variables originales.

ZWey1 = X1 (34)
ZWt = xt (35)
Sustituyendo (34) y (35) en (31), multiplicando por QT y luego utilizando (32) y (33), se tiene
AgZWyy1 = A1ZwWy + Az€pyq (36)
QT AgZwrir = QT A1 Zwy + QT Az€rs (37)

SWt+1 = TWt + Wft (38)
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donde,
W1 = [SHl] = [ ] = QT4,

Los valores propios del sistema estan en la diagonal de la matriz S~1T, esto es,

TG, i)

A4y, Ay) = SGD

(39)

donde S(i,i) y T (i, i) son elementos de la diagonal principal de las matrices Sy T, respectivamente.
Las raices con un modulo inferior y superior a la unidad se pueden ordenar de forma creciente.
Siguiendo esta ordenacion de los valores propios, consideramos la particion de las matrices.

S11 S2]rSe+1] _ [Tir Ti2][Se W
0 522“ut+1]‘ 0 Tzz][u]-l_[wz]e”l (40)

Al multiplicar por la matriz inversa implicada, se tiene:

St+1] _ [51_11 —(511522)_1512] [Tll le] ]

Utyq 0 Syat T22 (41)
n St —(511522) 71812 [
0 s3] €r+1
Al manipular se obtiene
[5“'1] = STy Sit Tz — (511522) 7 S12To2 [St]
Ut+1 0 S52 T, U (42)
STWy — (511522) 7 S1. W,
+ 1 €t+1
S22 W,

Si se cumple la condicion de unicidad y estabilidad, entonces las entradas SiiiTy; Y S T2
contienen a las raices estables y no-estables, respectivamente.
Se resuelve el ‘bloque inferior’ de la ecuacion (42) manipulando algebraicamente.

Sya Togte + S35 Wa€pi1 = Upsq (43)
Sya TopUly = Uprq — Sz Wo€piq (44)

Tyup = SaaUpsr — Wa€ryq (45)
U = Typ' Spotlesr — Tog Wo€pin (46)

14 En los célculos de la inversa se puede verificar el cumplimiento de la siguiente expresion:
-1 -1 — ¢c—1 -1¢-1 — ¢c—1 -1 -1 —
511 512 - (511522) 512522 - 511 512 - 511 522 512522 - 511 512 - 511 512522 522 - 0

La explicacion reside en el hecho de S;, es una matriz 2 x 2, mientras que S,, es un escalar 1 X 1, en tanto que S;, es
un vector 2 x 1. Similarmente, estas indicaciones aplican a las particiones T;4, Ty, Y T, respectivamente.
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En este punto, reescribimos la ecuacién (4.16) para los primeros tres periodos de tiempo.

Uty1 = Tz_zlszzut+2 - T2_21W2€t+2 (47)
Uty = Tz_zlszzut+3 - T2_21W2€t+3 (48)
Upyz = Tog SopUpsa — Tog Wokpig (49)

Al sustituir (47) en la ecuacion (46), y después de realizar el mismo ejercicio con (48) y (49) en el
resultado previamente calculado, se obtiene

Uy = (T2_21522)4ut+4-
— T3 [(S22T2 ) 3 W€y a+ (S22 T2 V2 Wo€rys + (S22 To )Woerrn  (50)
+ Wa€ria]

Si el sistema es estable, entonces el klim (T5,1S52)% = 0, por lo que, si se sigue iterando hacia
—00
adelante, se obtiene una solucién para las variables predeterminadas.

we = T ) (S5 Waerenn (51)
k=0

En el caso de que k = 0 capturamos disturbios para el periodo t + 1. En este caso especial, la
ecuacion anterior se reduce a

Uy = _T2_21W26t+1 (52)

Ahora bien, analicemos el ‘bloque superior’ de la ecuacién (42), del cual se puede desglosar la
expresion:

St+1 = Sit T11Se + [Si1 Tz — (S11522) " S12 o0 Jue

_ Z 53
+ [SE' Wy = (511522) 71 S1: Wal€ps 53)
Sustituyendo (52) en (53) se obtiene:
Ser1 = Sii TuaSe + [STT Wy — ST TioTo5 Waleriq (54)
Por otro lado, al considerar (35) y (36), se tiene:
Z11 Z12] Se1 xi
Zy1 Zp [ut] |x? (59)

Z11 Z12] St+1] _ Xt
[221 Zyy [ut+1] o x2, (56)
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De esta manera, en los periodos t y t + 1, el valor de la variable predeterminada se relaciona
respectivamente con s;, U, Sgy1 Y Upsq-

xi = Zy1S¢ + Z1ous (57)
xt1+1 = Z11St+1 t Z12Ut41 (58)

Si los agentes no esperan ningun disturbio futuro después del periodo t + 1, es decir, €;,, = 0 para
toda k > 1, entonces las dos ecuaciones implicadas se reducen a

St = Z1_11xtl + Zl_11212T2_21W26t+1 (59)
St+1 = Z11 Xt41 (60)

Reemplazando estas dos Ultimas ecuaciones en (54) manipulamos para obtener
Z1_11xz,}+1 = 51_11T11[Z1_11xt1 + Z1_11212T2_21W2€t] + [51_11D1 - 51_11T12T2_21W2]€t+1 (61)
Es decir,
xt1 = Fxt + Gepyq (62)
donde,
F =Z11Si T Z11
G = Z11 St Wy + (Z11S11 T1a 211 Z12T55" — 211511 T12 T2 )Ws
Consideremos otra vez el ‘bloque inferior’ de la ecuacion (55).
X¢ = Zp15¢ + Zaouy (63)
Ahora podemos sustituir (52) y (59) en la ecuacién anterior y encontrar el resultado.
xf = Mx} + Negyq (64)
donde,
M = 22121_11
N = Zz1Z1_11212T2_21W2 - ZzzT2_21W2

De esta manera, se tiene una solucion para las variables predeterminas y no-predeterminadas. La
primera se manifiesta en la ecuacion (62) y la segunda se expresa por medio de la ecuacion (64).
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Por ultimo, calculemos las funciones impulso-respuesta para cada clase de variables. En el caso de
las variables-predeterminadas podemos calcular

x} = Fx} + Geg
x3 = Fx} + Ge, = F(Fx} + Ge;) + Ge, = F2x} + FGe, + Ge,
x3 = Fx} + Ge} = F(F?x} + FGe; + Ge,) + Ge; = F3x} + F2Ge; + FGe, + Geg
xt = F'x} + F"1Ge;, + FU2Ge, + -+ + F2Ge_, + FGe_q + Geg

Similarmente, para las variables no-predeterminadas se tiene

x? = Mx} + Ne, = M(Fx} + Ge;) + Ne, = MFx} + MGe; + Ne,
x% = Mx} + Ne; = M(F%x} + FGe, + Ge,) + Ne; = MF%x} + MFGe; + MGe, + Neg
x2 = Mx} + Ne, = M(F3x} + F2Ge, + FGe, + Ge3) + Ney, = MF3x} + MF2Ge, + MFGe, + MGes + Ne,

Xg = Mthé + MFt_lGel + A + MFZGEt_Z + MFGEt_l + MGEt + NEt
A fin de sintetizar, los valores de la funcion impulso-respuesta se esbozan en el cuadro 5.

Cuadro 5
Funcion impulso respuesta

Variable Impacto de un choque Variable Impacto de un choque
en el periodo t en el periodo t

xi Ge, xZ HGe,

Xiq FGe, X2, 4 MFGe,
1 2 2 2

Xig2 F~Ge, Xito MF“Ge,
1 i— 2 i—

Xt+]' F] 1G€t Xt+]‘ MF] 1G€1

Fuente: Elaboracion propia

La trascendencia de las funciones impulso-respuesta sera evidente en las simulaciones
numeéricas de la siguiente seccion.

IVV. SIMULACIONES DE LAS FUNCIONES IMPULSO-RESPUESTA

En esta seccion se presentan las simulaciones numéricas de las funciones impulso-respuesta para el modelo
neokeynesiano de expectativas racionales esbozado en la segunda seccidn de este articulo. Las simulaciones
numeéricas ilustran la equivalencia de los métodos Blanchard-Khan y Klein. Desde luego, los resultados
muestran pequefias diferencias despreciables entre los dos enfoques. Por consiguiente, el usuario debe
decidir el método de su preferencia en funcion de sus recursos computacionales.

En los célculos para la simulacién numérica se proponen dos conjuntos de parametros calibrados®.

15 Walsh (2003, p. 248) reporta algunos valores de los pardmetros semejantes a los aqui simulados. La calibracién de los pardmetros
es una cuestion de distinta naturaleza a la econometria.
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Cuadro 6
Calibracion de los pardmetros
Caso A Caso B
B =07 B =07
6, =0.8 6, =1.1
c=0.38 =028
p =07 p=0.7
Kk = 0.086 k = 0.086

Fuente: Elaboracion propia.

El primer conjunto de datos (en el cuadro 6) muestra el caso de un banco central que respeta el
‘principio de Taylor’ al conducir su politica monetaria. El parametro 6; es el coeficiente de la regla de la
tasa de interés a la inflacién. Si este es inferior a la unidad, significa que el banco central sube la tasa de
interés nominal en una cuantia inferior al aumento en la tasa de inflacion. Si bien la matriz A es de rango
completo, tenemos dos raices estables y otra que supera la unidad.

p 0 0

K 1 _k 0.7 0 0
A=AxtA,=| B B B |=| 012285714 1.4285714 —0.1228571

ko o(f8—1) B+ko —0.09828571 —0.5028571 1.0982857

B B B

A =0.7; A, = 0.9650132; Az = 1.5618440

Como el nuimero de valores propios inestables es menor a la cantidad de variables no-
predeterminadas, hay soluciones multiples. Es decir, no hay una Unica trayectoria de equilibrio. Mankiw
(2014, p. 627), argumenta, por ejemplo, respecto a 6 inferior a la unidad, que en este caso implica una
inflacion inestable. La explicacion es que un incremento en la inflacién se acompafiaria de una caida de la
tasa de interés real, la demanda agregada rebasaria el producto natural provocando incrementos de los
precios sin limites?®,

En el segundo conjunto de valores (cuadro 1), la matriz A practicamente es idéntica excepto por la
entrada As,. La matriz sigue siendo de rango completo, pero ahora hay dos valores propios inestables.

p 0 0
K 1 _k 0.7 0 0
A=AxA, =| B B B |=|0.12285714 1.4285714 —0.1228571
ko o(fO—1) L +ko —0.09828571 —0.2628571 1.0982857
B B B
A =0.7; A, =1.019367; A; = 1.507490

16 Si el sistema es inestable porque el banco central no respeta el ‘principio de Taylor’, en este caso, no vale la pena realizar la
simulacién numérica.
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En este caso, como el nimero de valores propios inestables es igual a la cantidad de variables no-
predeterminadas, se puede afirmar que el sistema de ecuaciones en diferencias lineal estocastica tiene una
solucion de trayectoria estable de la clase ‘punto de silla’.

Ahora bien, el método Blanchard-Khan consiste en la descomposicion de Jordan de la matriz A =

P~1JP.*" Los célculos de estas matrices dan lugar a:
0.7 0 0 0.15244832 0 0
J={ 0 1.019367 0 P ={-0.05084073 0.538503 0.8383414
0 0 1.507490 —0.10160759 —0.538503 0.1616586

La particion de las matrices por clase de variables enddgenas es:

3 _ (1.019367 0

J1=07 ]2 = ( 0 1.507490)
_ _ _ (—0.05084073 _ /0538503 0.8383414
P11 = 015244832 P =(0 0)  Por = (—0.10160759) P2 = (—0.538503 0.1616586)

De esta manera,

F= (P11 - P12P2_21P21)_1]1(P11 - P12P2_21P21) =0.7
G = (P11 - P12P2_21P21)_1(P11—]1P12P2_21]2_1P21)Bl =1
H= (P11 - P12P2_21P21)_1P12P2_21]2_1P21Bl =0

Es decir, se tiene la siguiente ecuacion en diferencia para las variables predeterminadas

xt =07xt, +e
Por otra parte, también se tiene:

—0.1429203)

—0.08995854)
0.1524483

_— _1 =
N = —ZTHp W, = ( 0.11727458

M= 22121_11 = (

Es decir, la ecuacion para las variables no-predeterminadas es:

, _ (—0.1429203\ ; . (—0.08995854
¢=( 0.1524483 )t +( 0.11727458 )en

Con la ayuda de esta Gltima ecuacion, podemos simular y graficar las funciones impulso-respuesta.
En la Grafica 1, la economia experimenta un choque positivo de 1% en el producto natural. La tasa de
inflacion y el producto corriente reaccionan de acuerdo con la teoria econémica. Un choque positivo del
producto natural provoca una expansion econémica, aunque ésta es acompafiada de una deflacion de precios.
En los siguientes 15 periodos, estas variables se ajustan de manera gradual a una situacion de reposo. La
tasa de deflacion se revierte y la produccidn converge a su tasa natural.

17 La descomposicion de matrices se puede realizar en Matlab u otros. En este caso, se uso el software R-package.
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Grafica 1
La simulacién basad en el método de Blanchard-Khan

Funcidén impulso-respuesta a la Blanchard-Khan
Choque positivo en el producto potencial

0.17

series

inflacion
A producto

valores

0.0

-0.17

5 10 15 20
tiempo

Fuente: Elaboracion propia

Ahora realizamos calculos con el método Klein, el cual se basa en la descomposicion de
Schur QTA4,Z =Sy QTA,Z =T, donde

—0.09947587 —0.1691792 0.9805524 —0.1398986 —0.3035252 0.9424971

0.99431810 0.0206291 0.1044316 0.9788566 0.1010572 0.1778404
0.03789557 —0.9853694 —0.1661658 0.1492252 —0.9474492 —0.2829698

0 1.2108847 —0.5720834 0 1.23433598 —0.70202039

(0.9844501 0.0765125 0.1290508 > (0.6891151 0.04553555 0.04679024)
S = T =
0 0 0.5872209 0 0 0.88522971
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La particion de las matrices por la clase de variables endégenas es:

S,, = 09844501  S;, = (0.0765125 0.1290508) S, = (0) S,, = (1'210885 _0'5720834)

00 12034336 0'508770222(?;04
Ty, = 0.6891151 T, = (0.04553555 0.04679024) T,y = (0) Ty, = (* h o.é852297)
Los valores propios del sistema se calculan mediante (4,,4;) = % y son idénticos al método anterior.
1 = 0.6891151 07 1= 1.234336 1019367 1. = 0.8852297 — 150749
1709844501 ~ ° "*7 1.210885 270.5872209

De esta manera,

F =Z11S1{'T1Zi{ =07
G = 21151_11W1 + (21151_117"1121_11212T2_21 - 21151_11T12T2_21)W2 =1

Es decir, se tiene la misma ecuacion en diferencias para la variable predeterminada.
xt =0.7x}t, +€
Ademas, como

N = 22121_11212T2_21W2 - Z22T2_21W2

—0.1429205 _ _ _
) N = (Zy1Z11 Z15Ts5" — ZooTg )W, = (

_ 1 —0.08995861
M=2nZ1 = ( 0.1524485 )

0.11727569
La ecuacion para las variables no-predeterminadas es

2 _ (—0.1429205) N (—0.08995861)

t 0.1524485 /°* 0.11727569 / 1

Las funciones impulso-respuesta en el caso del método de Klein se presentan en la gréfica 2.
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Gréfica 2
La simulacion basada en el método Klein
Funcién impulso-respuesta a la Klein
Choque positivo del producto potencial

0.1

series

0.01 inflacion

valores

% producto

-0.11

5 10 15 20
tiempo

Fuente: Elaboracion propia

Como es evidente, los dos enfoques muestran el mismo comportamiento para las variables no-
predeterminadas. La expansion econdémica se acompafia de una deflacién de precios. Sin embargo, otra vez,
en los siguientes 15 periodos, la economia se ajusta gradualmente a la situacion de estado estacionario.

COMENTARIOS FINALES

Los modelos de la disciplina invocan el esquema de expectativas racionales, negar su importancia es ‘ir
contra el viento’. Por eso, los métodos de resolucién numérica de los sistemas lineales de expectativas
racionales son trascendentales para la macroeconomia. Existen determinados métodos de solucién, uno de
ellos es el de coeficientes indeterminados, pero éste depende en gran manera de la pericia y experiencia para
plantear una ‘conjetura de solucion’. Ademas, este método es ambiguo respecto a la existencia de equilibrios
multiples. Otro método consiste en reemplazar las expectativas por proyecciones lineales de las variables
enddgenas observables. Este método de extraccion de sefiales aplica a una economia en la que los agentes
interacttan con informacion privada. Esta técnica es avanzada y requiere de los métodos estudiados en este
articulo.
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Los métodos de Blanchard-Khan y Klein son idoneos para encontrar una soluciéon numérica para
los sistemas lineales de expectativas racionales. En funcion de las raices estables e inestables, los dos
métodos permiten desacoplar el sistema original en dos bloques. El primero contiene al conjunto de
variables predeterminadas y el segundo coadyuva en la resolucion de las variables no-predeterminadas. La
solucion usando cualquiera de los dos métodos es idéntica, aunque el método mas particular es diferente. El
método de Klein es méas robusto debido a que permite resolver sistemas lineales de expectativas racionales,
aun cuando la matriz de ‘variables de estado y control” sea singular. Por tal motivo, abogamos por el método
de Klein (2000) porque permite lidiar con matrices de rango no-completo.

El &lgebra de los métodos de Blanchard-Khan y Klein se aplicd al ‘modelo neokeynesiano de
expectativas racionales’*®, Los resultados numéricos alcanzados muestran la idoneidad de estos métodos de
solucion para los modelos lineales de expectativas racionales. La simulacién numérica de las funciones
impulso-respuesta y su capacidad de prediccion dindmica encaja con la teoria macroeconémica. En el
modelo neokeynesiano de expectativas racionales que estudiamos, un incremento exdgeno en el producto
natural provoca una caida de la tasa de inflacion (ecuacién 1). Entonces, el banco central ajusta la tasa de
interés en una medida propicia (ecuacién 3), de modo que, la disminucion de la tasa de interés real estimula
la demanda agregada y la actividad econdmica (ecuacion 2). Las gréaficas de las funciones impulso-respuesta
describen la dindmica de una ‘transicion suave’ de la economia hacia una situacién de reposo. Es decir, la
tasa de inflacion y la brecha de produccion real experimentan saltos al principio, pero después de algunos
periodos, estas variables convergen a su senda de equilibrio.

Es posible insertar otras caracteristicas de la realidad a la estructura algebraica del modelo estudiado.
El analisis cimentado en los preceptos de la teoria macroeconémica nos abre la posibilidad de integrar
inercias de algunas variables importantes, extender la reflexion a una economia abierta, considerar la politica
monetaria 6ptima bajo incertidumbre, etc. Con toda seguridad, en cualquier caso, usaremos los métodos de
resolucion numeérica expuestos en este articulo porque nos facilitan ganar perspicacia en la teoria
macroecondmica. Los métodos de estimacion estadistica y la calibracion de los pardmetros son
suplementarios en el objetivo de ‘empatar’ la simulacion del modelo con los datos observados.
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