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Resumen

El valor genómico es la mejor predicción del valor genotípi-
co de un animal, cuya exactitud varía en función de varios 
factores. Los objetivos de este estudio fueron, mediante si-
mulación, comparar la exactitud de los valores genómicos de 
animales predichos a través del análisis con dos modelos al-
ternativos, y obtener la correlación genética entre estos y los 
valores genéticos verdaderos simulados. Una población con 
tamaño efectivo de 800 individuos fue simulada y se usaron 
100 generaciones para generar desequilibrio de ligamiento. 
Después se simuló otra población con 14 generaciones, un 
panel de 53 010 polimorfismos de nucleótido simple (SNP’s) 
ubicados aleatoriamente en 30 cromosomas y 540 loci de 
características cuantitativas. También se simularon los ge-
notipos y fenotipos de 6400 animales usando una hereda-
bilidad=0.40 y considerando solamente los efectos aditivos. 
Cuatro conjuntos de valores moleculares fueron entrenados 
con los marcadores SNP’s de las generaciones 7 a 10, y los 
correspondientes valores genéticos ajustados. Cuando la 
población de entrenamiento (PEn) tuvo tamaño mayor, los 
estimadores de exactitud (R2) fueron mayores. Similarmente, 
cuando la población de evaluación (PEv) estuvo más cerca a la 
PEn, los estimadores de R2 fueron mayores y se fueron redu-
ciendo cuando la distancia entre PEn y PEv se incrementaba. 
El estimador de la varianza del error de predicción (PEV) fue 
menor (0.15±0.01) cuando PEn y PEv estuvieron más cerca, 
independientemente del tamaño de PEn, generación 10 para 
PEn y generación 11 para PEv. Por el contrario, el PEV mayor 
(0.29±0.02) se obtuvo cuando la PEn incluyó los animales 
de la generación siete y se evaluó la generación 14; es decir, 
cuando la distancia entre PEn y PEv era mayor.

Abstract

The genomic value is the best prediction of the genotypic 
value of an animal, whose accuracy varies in function of 
several factors. The objectives of this study were to compare, 
through simulation, the accuracy of the genomic values of 
animals predicted through analysis with two alternative 
models, and to obtain the genetic correlation between these 
and the true genetic values simulated. A population with 
an effective size of 800 individuals was simulated and 100 
generations were used to generate linkage disequilibrium. 
Then, another population was simulated with 14 generations, 
a panel of 53 010 single nucleotide polymorphisms (SNPs), 
placed randomly in 30 chromosomes and 540 quantitative 
traits loci. The genotypes and phenotypes of 6400 animals 
were also simulated using a heritability=0.40, and 
considering only the additive effects. Four sets of molecular 
values were trained using the SNP markers of generations 7 
to 10, and the corresponding adjusted genetic values. When 
the training population (TP) was larger in size, the accuracy 
estimators (R2) were higher. Similarly, when the evaluation 
population (EP) was closer to the TP, the R2 estimators were 
higher and they became smaller when the distance between 
TP and EP increased. The estimate of the prediction error 
variance (PEV) was lower (0.15±0.01) when TP and EP were 
closer, regardless of the size of the TP, generation 10 for TP 
and generation 11 for EP. On the contrary, the highest PEV 
(0.29±0.02) was obtained when the TP included animals 
from generation seven and generation 14 was evaluated; that 
is, when the distance between TP and EP was greater.

Keywords: Predicted genomic value, accuracy of the genomic 
value, genomic selection.



AGROCIENCIA, 16 de agosto - 30 de septiembre, 2015

VOLUMEN 49, NÚMERO 6614

Palabras clave: Valor genómico predicho, exactitud del valor ge-
nómico, selección genómica.

Introducción

Un objetivo común en programas de mejora-
miento genético es usar la información del 
ADN para aumentar el progreso genético al 

reducir el intervalo entre generaciones y aumentar la 
exactitud de las predicciones. Ahora se puede deter-
minar el genotipo de animales para decenas de miles 
de polimorfismos de nucleótido simple (SNP’s, siglas 
en inglés; Goddard y Hayes, 2007). Estos SNP’s pue-
den usarse para obtener los valores genómicos de los 
animales (Meuwissen et al., 2001).
	 La evaluación genómica de animales puede efec-
tuarse en una (Misztal et al., 2009; Aguilar et al., 
2011), o en dos etapas (Hayes et al., 2009; Van Ra-
den et al., 2009). Cuando se realiza en dos etapas, 
en la primera se usa una población de entrenamiento 
(PEn) para obtener las ecuaciones de predicción, las 
cuales se usarán en una segunda etapa en la población 
de evaluación (PEv) para predecir los valores genómi-
cos (VGn); en la PEv no se requiere tener los registros 
fenotípicos de los individuos, pero sí sus genotipos. 
Los animales utilizados en la PEv no deberán con-
siderarse en la PEn (Garrick, 2011). En la fase de 
entrenamiento se predice la influencia de pequeñas 
regiones genómicas por regresión de la información 
observada del genotipo de los marcadores para una 
población dada. El genotipo deberá estar constitui-
do por un gran número de marcadores (Garrick et 
al., 2009). Los animales en ambas poblaciones de-
berán ser de la misma raza (Kachman et al., 2013), y 
pueden evaluarse al obtener una muestra de su tejido 
para realizar el genotipado, lo cual permite reducir el 
intervalo entre generaciones y, como consecuencia, 
aumentar el progreso genético.
	 La exactitud de los valores genómicos predichos 
se define como la correlación entre el VGn y el valor 
genético verdadero (VG) (Garrick y Saatchi, 2011; 
Meuwissen et al., 2001). Un incremento en la exac-
titud de los VGn de los animales candidatos a selec-
ción incrementará el progreso genético, especialmen-
te para características con baja heredabilidad (h2).
	 Habier et al. (2007) indicaron que tanto el des-
equilibrio de ligamiento entre los marcadores y los 
loci de características cuantitativas (QTL, por sus 
siglas en inglés) y las relaciones de parentesco entre 

Introduction

A common objective in the genetic 
improvement programs is to use the DNA 
information to increase the genetic progress 

when reducing the interval between generations and 
increasing the accuracy of the predictions. It is now 
possible to determine the genotype of animals for tens 
of thousands of single nucleotide polymorphisms 
(SNPs) (Goddard and Hayes, 2007). These SNPs can 
be used to obtain the genomic values of the animals 
(Meuwissen et al., 2001).

The genomic evaluation of animals can be done in 
one (Misztal et al., 2009; Aguilar et al., 2011), or two 
stages (Hayes et al., 2009; Van Raden et al., 2009). 
When it is done in two stages, a training population 
(TP) is used in the first one, to obtain the prediction 
equations, which will be used in the second stage 
with the evaluation population (EP) to predict the 
genomic values (GV); in the EP there is no need for 
phenotypic records of individuals, but their genotypes 
are required. The animals used in the EP should not 
be considered in the TP (Garrick, 2011). During the 
training phase the influence of small genomic regions 
is predicted through regression of the information 
observed from the markers’ genotypes for a given 
population. The genotype should be constituted by 
a large number of markers (Garrick et al., 2009). 
The animals in both populations should be of the 
same breed (Kachman et al., 2013), and can be 
evaluated when obtaining a sample of their tissue to 
perform the genotyping, which allows reducing the 
generation interval and, as consequence, increasing 
the genetic progress. 

The accuracy of the genomic values predicted is 
defined as the correlation between the GV and the 
true genetic value (TGV) (Garrick and Saatchi, 
2011; Meuwissen et al., 2001). An increase in the 
accuracy of the GV of the animals that are candidates 
for selection would increase the genetic progress, 
especially for low heritability traits (h2).

Habier et al. (2007) indicated that both the linkage 
disequilibrium between markers and the quantitative 
trait loci (QTL), and the relationships between the 
TP and EP individuals, influence the accuracy of the 
GV. Close relationships between individuals from 
the TP and EP,  yield better predictions than those of 
individuals with more distant relationships (Habier 
et al., 2010; Saatchi et al., 2010; Saatchi et al., 2011). 
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individuos de las PEn y PEv, influyen en la exactitud 
de los VGn. Relaciones cercanas entre los individuos 
de PEn y PEv tienen mejores predicciones que las 
de individuos con relaciones más distantes (Habier et 
al., 2010; Saatchi et al., 2010; Saatchi et al., 2011). 
Otros factores que también influyen en la exactitud 
de los VGn son la distancia entre marcadores, tama-
ño de la PEn, número de animales o sementales en 
la PEn, heredabilidad de la característica, estructura 
genética, y número de marcadores usados para la pre-
dicción genómica (Goddard y Hayes, 1992; Meuwis-
sen et al., 2001; Hayes et al., 2009).
	 Con información ajustada, de acuerdo con Ga-
rrick et al. (2009), se puede obtener una exactitud 
hasta 2.76 veces mayor que con el registro de un solo 
individuo. Ostersen et al. (2011) obtuvieron exacti-
tudes 18 a 39 % mayores de los VGn, dependiendo 
de la característica evaluada, cuando utilizaron VG 
ajustados por los valores genéticos de los padres del 
animal (DEVG, siglas en inglés) en lugar de VG, 
como variable de respuesta. Garrick et al. (2009) 
mostraron que los DEVG con el promedio parental 
removido producen VGn predichos más exactos, por 
dos razones: 1) los DEVG como variable respuesta 
resultan en menos conteos dobles que con los VG 
porque los DEVG excluyen información de los an-
cestros, y si tanto la progenie como sus padres son 
genotipados, el grado de conteo doble decrece cuan-
do se usan DEVG como la variable de respuesta; 2) al 
usar los VG como las variables de respuesta el grado 
de doble conteo en los VGn decrece, en particular 
cuando las confiabilidades de los valores genéticos 
son bajas.
     La predicción del VGn para un animal utilizando 
un enfoque Bayesiano, como el Bayes C (Meuwis-
sen et al., 2001; Habier et al., 2011), es la media a 
posteriori del valor genético del animal. La exactitud 
puede obtenerse elevando al cuadrado la correlación 
entre el VG verdadero y los VGn.
	 Los objetivos de este estudio fueron comparar 
la exactitud de los valores genómicos predichos con 
dos modelos de análisis utilizando datos simulados, 
y estimar la correlación genética entre los valores ge-
néticos verdaderos obtenidos mediante simulación 
con los valores genómicos predichos con el programa 
Gen-Sel.

Other factors that also influence the accuracy of the 
GV are the distance between markers, the size of the 
EP, the number of animals or studs in the TP, the 
heritability of the trait, the genetic structure, and the 
number of markers used for the genomic prediction 
(Goddard and Hayes, 1992; Meuwissen et al., 2001; 
Hayes et al., 2009).

With adjusted information, according to Garrick 
et al. (2009), an accuracy of up to 2.76 times higher 
than with the record of a single individual can be 
obtained. Ostersen et al. (2011) obtained accuracies 
18 to 39 % higher than the GV, depending on the trait 
evaluated, when deregressed GV (DEVG) were used, 
instead of TGVs as a response variable. Garrick et al. 
(2009) showed that the DEVGs with the removed 
parent average produce more exact VGs, because of 
two reasons: 1) the DEVGs as response variable result 
in less double counts than with the TGVs because the 
DEVGs exclude information from the ancestors, and 
if both the offspring and its parents are genotyped, 
the degree of double count decreases when DEVGs 
are used as the response variable; 2) when using the 
TGVs as the response variable, the degree of double 
count in the GVs decreases, particularly when the 
reliabilities of the genetic values are low.

The prediction of the GV for an animal using 
a Bayesian approach, such as Bayes C (Meuwissen 
et al., 2001; Habier et al., 2011), is the a posteriori 
mean of the genetic value of the animal. The accuracy 
can be obtained squaring the correlation between the 
TGV and the GVs.

The objectives of this study were to compare the 
accuracy of the genomic values predicted with two 
analysis models using simulated data, and to estimate 
the genetic correlation between the true genetic 
values obtained through simulation and the genomic 
values predicted with the Gen-Sel program.

Materials and Methods

The linkage disequilibrium was obtained by simulating a 
historical population with an effective size of 800 individuals 
and 100 generations. Then, another population with 14 discreet 
generations was simulated, 20 males and 200 females 
selected randomly to produce the following generation, a 
panel of 53 010 SNPs located randomly in 30 chromosomes, 
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Materiales y Métodos

	 El desequilibrio de ligamiento se obtuvo simulando una po-
blación histórica con tamaño efectivo de 800 individuos y 100 
generaciones. Después se simuló otra población con 14 genera-
ciones discretas, 20 machos y 200 hembras seleccionadas aleato-
riamente para producir la siguiente generación, un panel de 53 
010 SNP’s ubicados aleatoriamente en 30 cromosomas, cada uno 
separado 100 centiMorgans de longitud, y 540 QTL con efectos 
provenientes de una distribución gama (Weller et al., 2005). Los 
SNP’s y los QTL se consideraron bialélicos con frecuencias ini-
ciales aleatorias. También se simularon los genotipos y fenotipos 
de 6400 bovinos usando una heredabilidad de 0.4, y sólo se con-
sideraron los efectos aditivos. Otros parámetros de la población 
simulada se indican en el Cuadro 1. Para generar la información 
genotípica y fenotíٕpica se utilizó el programa QMSim (Sargolzaei 
y Schenkel, 2009). 
	 Cuatro conjuntos de valores moleculares fueron entrenados 
usando los marcadores SNP’s de las generaciones 10 (n=1,000), 
9 y 10 (n=1,400), 8 a 10 (n=1800), 7 a 10 (n=2200), y los co-
rrespondientes DEVG. Posteriormente se predijeron los valores 
genéticos con un modelo mixto que incluyó los efectos aleatorio 
del animal y fijos de sexo del animal y generación mediante el 
programa ASReml (Gilmour et al., 2009) y los DEVGs se ob-
tuvieron siguiendo la metodología de Garrick et al. (2009). La 
ponderación para el i-ésimo animal se obtuvo con la ecuación 
wi=(1-h2)/[(c+(1-r2)/r2)h2], donde c es la falta de ajuste de la 
ecuación de predicción o la parte genética no explicada por los 
marcadores, se asumieron valores de c=0.1 y h2=;0.4; y r2 fue la 
confiabilidad de los DEVG para el i-ésimo animal. El modelo 
usado para obtener los efectos de los marcadores en la población 
de entrenamiento fue:

y z u ei j
j

k

iij
  




1

donde yi es el DEVG para el i-ésimo animal, m es la media pobla-
cional, k es el número de loci de los marcadores en el panel, zij es 
el genotipo del i-ésimo animal (número de copias del alelo 1) en 
el j-ésimo locus del marcador, uj es el efecto aleatorio del j-ésimo 
SNP muestreado de uj ~N(0, s2

u) con probabilidad 1-p o 0 
con probabilidad p, y ei es el residual con varianza s2

e/wi, depen-
diendo de la exactitud del DEVG para el i-ésimo individuo. Los 
valores a priori para s2

a y s2
e fueron 0.4 y 0.04, respectivamente.

	 Las ecuaciones de predicción genómica para obtener los va-
lores genómicos se derivaron de un análisis ponderado para los 
animales de las generaciones 11 a 14, para lo cual se usó la fun-
ción BayesCp del programa Gen-Sel (Fernando y Garrick, 2009) 

Cuadro 1.	 Estructura poblacional y parámetros utilizados 
para la simulación.

Table 1.	 Population structure and parameters used for the 
simulation.

Parámetro Valor

Número de cromosomas 30
Número de SNP’s 53 010
Número de alelos marcadores 
por locus

2

Frecuencias iniciales de los 
alelos marcadores

Aleatorias

Número de QTL 540
Número de alelos para los 
QTL

2

Frecuencias iniciales de los 
alelos QTL

Aleatorias

Número de generaciones 
para crear desequilibrio de 
ligamiento

100

Número y tamaño de gene-
raciones

1 a 9400 animales 
10, 1000 animales 
11 a 14, 400 animales

Generaciones usadas como 
población de entrenamiento

7 a 10

Generaciones evaluadas 11 a 14
Heredabilidad 0.4

each one separated by 100 centiMorgans of length, and 
540 QTLs with effects from a gamma distribution (Weller 
et al., 2005). Both the SNPs and the QTLs were considered to 
be biallelic with random initial frequencies. The genotypes and 
phenotypes of 6400 bovines were simulated using a heritability 
of 0.4, and only the additive effects were considered. Other 
parameters of the population simulated are shown in Table 1. 
In order to generate the genotypic and phenotypic information, 
the QMSim software was used (Sargolzaei and Schenkel, 2009). 

Four sets of molecular values were trained using the SNP 
markers of generations 10 (n=1000), 9 and 10 (n=1400), 8 to 
10 (n=1800), 7 to 10 (n=2200), and the corresponding DEVGs. 
Later, the genetic values were predicted with a mixed model that 
included the random effects of the animal and the fixed ones 
of animal sex and generation through the ASReml software 
(Gilmour et al., 2009), and the DEVGs were obtained by 
following the methodology by Garrick et al. (2009). Weighting 
for the i-th animal was obtained with the equation wi=(1–h2)/
[(c+(1–r2)/r2)h2], where c is the lack of fit of the prediction 
equation or the genetic part not explained by the markers, values 
of c=0.1 and h2=0.4 were assumed; and r2 was the reliability of 
the DEVGs for the i-th animal. The model used to obtain the 
effects from the markers in the training population was:
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a través de la plataforma bioinformática para implementar se-
lección genómica (Bioinformatics to Implement Genomic Selec-
tion, BIGS) de la Universidad Estatal de Iowa (EE.UU.)1. La op-
ción BayesCp se seleccionó por sus ventajas sobre otras opciones 
de Bayes, al ajustar un modelo similar a BayesB (Meuwissen et 
al., 2001; Habier et al., 2011), además de estimar la proporción 
de loci no informativos en el modelo (p), y el supuesto de una 
varianza común para todos los loci con efectos no cero, en lugar 
de la varianza individual para cada locus (Habier et al., 2011). 
La cadena usada tenía una longitud de 41,000, se utilizaron las 
últimas 40 000 muestras para obtener los estimadores a posteriori 
de los efectos medios y varianzas, se quemaron las primeras 1000 
iteraciones, y p se fijó en 0.95.
	 El valor genómico para el i-ésimo animal se obtuvo como la 
suma sobre todos los marcadores de las medias a posteriori de los 
efectos predichos de los SNP’s, multiplicados por el número de 
copias del alelo 1, usando la ecuación:

VGn z ui ij j
j

k



 

1

donde VGni es el valor genético molecular, valor genómico, para 
el i-ésimo animal, zij es el genotipo del j-ésimo marcador en el 
i-ésimo animal, y uj  es la media a posteriori del efecto del SNP 
para el j-ésimo marcador.

	 Los modelos utilizados para obtener los valores genómicos 
en Gen-Sel fueron: 1) uno sin considerar los efectos de sexo y nú-
mero de generación, y 2) otro que sí los incluyó. Los criterios de 
comparación utilizados fueron la exactitud, estimada a través del 
coeficiente de determinación múltiple  (R2) y la varianza del error 
de predicción de los valores genómicos (PEV). La correlación 
genética entre los valores genéticos verdaderos simulados obteni-
dos con el programa QMSim (Sargolzaei y Schenkel, 2009) y los 
valores genómicos predichos con el programa Gen-Sel (Fernando 
y Garrick 2009) se estimó con el programa ASReml (Gilmour et 
al., 2009).

Resultados y Discusión

	 Los estimadores de R2 fueron mayores cuando 
PEn fue mayor (incluyó más generaciones) que PEv. 
De manera similar, los estimadores de R2 fueron ma-
yores cuando disminuía la distancia entre PEv y Pen, 
y se fueron reduciendo cuando aumentaba la distan-
cia entre ambas poblaciones (Cuadro 2).

1 http://bigs.ansci.iastate.edu/

y z u ei j
j

k

iij
  




1

where yi is the DEVG for the i-th animal, m is the population 
mean, k is the number of loci of the markers in the panel, zij 
is the genotype of the i-th animal (number of copies of allele 
1) in the j-th locus of the marker, uj is the random effect of the 
j-th SNP sampled from uj ~N(0, s2

u) with a probability of 1-p or 
0 with probability p, and ei is the residual with variance s2

e/wi, 
depending on the accuracy of the DEVG for the i-th individual. 

The a priori values for s2
a and s2

e were 0.4 and 0.04, 
respectively.The equations for genomic prediction used to obtain 
genomic values were derived from an analysis weighted for 
animals of generations 11 to 14, for which the BayesCp function 
of the Gen-Sel software was used (Fernando and Garrick, 2009), 
through the bioinformatics platform to implement genomic 
selection (Bioinformatics to Implement Genomic Selection, 
BIGS) of the State of Iowa University (USA)1. The BayesCp 
option was selected for its advantages over other Bayesian 
options, when adjusting a model similar to BayesB (Meuwissen 
et al., 2001; Habier et al., 2011), in addition to estimating the 
proportion of non-informative loci in the model (π), and the 
assumption of a common variance for all the loci with non-zero 
effects, instead of the individual variance for each locus (Habier 
et al., 2011). The chain used had a length of 41,000, the last 
40,000 samples were used to obtain the estimators a posteriori of 
the medium effects and variances, the first 1,000 iterations were 
burned, and p was fixed at 0.95.

The genomic value of the i-th animal was obtained as the 
sum over all the markers of the a posteriori means of the effects 
predicted from the SNPs, multiplied by the number of copies of 
allele 1, using the equation:

VGn z ui ij j
j

k



 

1

where VGni is the genetic molecular value, genomic value, for 
the i-th animal, zij is the genotype of the j-th marker in the i-th 
animal, and uj  is the a posteriori means of the SNP effect for the 
j-th marker.

The models used to obtain the genomic values in the Gen-
Sel were: 1) one without considering the effects of sex and 
number of generation, and 2) another one that did include 
them. The criteria for comparison used were accuracy (R2) and 
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	 Los resultados de este estudio son similares a los 
encontrados por Habier et al. (2010), Saatchi et al. 
(2010) y Saatchi et al. (2011), quienes observaron 
que con relaciones cercanas entre los individuos de 
PEn y PEv se obtienen mejores predicciones, en com-
paración con los obtenidos cuando estas poblaciones 
son más distantes.
	 En congruencia con los resultados para R2, el es-
timador de PEV fue menor, 0.15±0.01 cuando la 
PEn y la PEv estuvieron más cercanas, independien-
temente del tamaño de la PEn, generación 10 para 
PEn y generación 11 para PEv. Al contrario, el mayor 
PEV (0.29±0.02) se obtuvo cuando la PEn incluyó 
los individuos de la generación siete y se evaluó la 
generación 14; es decir cuando era mayor la distancia 
entre PEn y PEv. En el Cuadro 3 se muestran los esti-
madores de R2 y PEV para las diferentes poblaciones 
de entrenamiento y de evaluación, obtenidos con el 
modelo que no incluyó los efectos de sexo del animal 
y generación. Cuando la PEn fue de mayor tamaño 
(más generaciones incluidas), los estimadores de R2 
fueron mayores. De manera similar, cuando PEv es-
tuvo más cerca de PEn, los estimadores de R2 fueron 
mayores.
	 El estimador de PEV fue menor (0.15±0.01), 
cuando era menor la distancia entre PEn y PEv, inde-
pendientemente del tamaño de la PEn, generación 10 
para PEn y generación 11 para PEv. Por el contrario, 
el mayor PEV (0.29±0.02) se obtuvo cuando la PEn 
incluyó los animales de la generación siete y se evaluó 
la generación 14. Estos resultados son similares a los 

Cuadro 2.	Media y desviación estándar para exactitud (R2) y varianza del 
error de predicción (PEV) obtenidas con el modelo completo.

Table 2.	 Mean and standard deviation for accuracy (R2) and prediction 
error variance (PEV) obtained with the complete model.

Generación 
de evaluación 10 9 y 10 8 a 10 7 a 10

R2
11 0.14±0.07 0.28±0.05 0.33±0.05 0.39±0.05
12 0.06±0.08 0.17±0.07 0.23±0.06 0.29±0.07
13 0.01±0.08 0.13±0.07 0.17±0.06 0.23±0.06
14 -0.02±0.09 0.08±0.08 0.13±0.08 0.19±0.07

PEV
11 0.15±0.01 0.20±0.01 0.22±0.02 0.22±0.02
12 0.17±0.01 0.24±0.02 0.25±0.02 0.26±0.02
13 0.17±0.01 0.25±0.02 0.27±0.02 0.28±0.02
14 0.18±0.01 0.27±0.02 0.29±0.02 0.29±0.02

the prediction error variance of the genomic values (PEV). The 
genetic correlation between the true genetic values simulated 
obtained with the QMSim software (Sargolzaei and Schenkel, 
2009) and the genomic values predicted with the Gen-Sel 
software (Fernando and Garrick, 2009) were estimated with the 
ASReml program (Gilmour et al., 2009).

Results and Discussion

The R2 estimates were higher when the TP was 
greater (and included more generations) than the 
EP. Similarly, the R2 estimates were higher when the 
distance between the EP and TP decreased, and they 
reduced when the distance between both populations 
increased (Table 2).

The results from this study are similar to those 
found by Habier et al. (2010), Saatchi et al. (2010) 
and Saatchi et al. (2011), who observed that with close 
relationships between individuals from the TP and 
EP better predictions were obtained, in comparison 
to those obtained when these populations are more 
distant.

In agreement with the results for R2, the estimator 
for PEV was smaller, 0.15±0.01, when the TP and 
the EP were closer, independently of the size of the 
TP, generation 10 for TP and generation 11 for EP. 
On the contrary, the higher PEV (0.29±0.02) was 
obtained when the TP included the individuals of 
generation seven and generation 14 was evaluated; 
that is, when the distance between TP and EP was 
greatest. Table 3 shows the estimates for R2 and PEV, 
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encontrados por Habier et al. (2010), Saatchi et al. 
(2010) y Saatchi et al. (2011), quienes muestran que 
relaciones cercanas entre los individuos en PEn y PEv 
tienen mejores predicciones que con grupos más dis-
tantes. Los resultados también concuerdan con los de 
Meuwissen et al. (2001) y Hayes et al. (2009), quie-
nes señalan que el tamaño de la PEn también influye 
en la exactitud de la predicción de los VG. 
	 Saatchi et al. (2010) obtuvieron aumentos en R2 
de 39.7 y 24.2 % cuando incluyeron las generaciones 
51 a 58 y 55 a 58 en la PEn, y la PEv estuvo com-
puesta por las hembras de la generación 59 y h2 fue 
0.5. Cuando estos autores usaron h2=0.1, los incre-
mentos en R2 fueron 88.9 % (de 0.112 a 0.2116) y 
41.1 % (de 0.112 a 0.2116). Este efecto también fue 
reportado por Meuwissen et al. (2001) y Saatchi et 
al. (2012). Estos resultados pueden ser una expresión 
de varios factores, como lazos genéticos débiles entre 
PEn y PEv, un incremento en la tasa de recombina-
ción, un cambio en la estructura genotípica y una re-
ducción en el desequilibrio de ligamiento entre mar-
cadores y QTLs debido a un aumento en el número 
de generaciones entre ambas poblaciones (Saatchi et 
al., 2010).
	 Los estimadores de los coeficientes de correlación 
genética (rGhat,GV) entre los valores genómicos predi-
chos (Ghat) con el programa Gen-Sel y los valores 
genéticos verdaderos (VG), obtenidos con el modelo 
sin considerar los efectos de sexo y número de 

Cuadro 3.	Media y desviación estándar para exactitud (R2) y varianza 
del error de predicción (PEV), obtenidas con el modelo sin 
considerar los efectos de sexo del animal y generación.

Table 3. Mean and standard deviation for accuracy (R2) and prediction 
error variance (PEV) obtained with the model without taking 
into consideration the effects of sex and generation of the 
animal.

Generación 
de evaluación 10 9 y 10 8 a 10 7 a 10

R2
11 0.14±0.07 0.28±0.06 0.34±0.05 0.40±0.04
12 0.06±0.08 0.17±0.06 0.23±0.06 0.30±0.06
13 0.01±0.08 0.12±0.07 0.18±0.07 0.25±0.06
14 -0.03±0.10 0.08±0.08 0.14±0.07 0.19±0.07

PEV
11 0.15±0.01 0.20±0.02 0.21±0.02 0.22±0.01
12 0.16±0.01 0.24±0.02 0.25±0.02 0.25±0.02
13 0.17±0.01 0.26±0.02 0.27±0.02 0.27±0.02
14 0.18±0.02 0.27±0.02 0.28±0.02 0.29±0.02

for the different training and evaluation populations, 
obtained with the model that did not include the 
effects from animal sex and generation. When the TP 
was of larger size (more generations included), the R2 
estimators were higher. Similarly, when EP was closer 
to TP, the R2 estimators were higher.

The PEV estimate was lower (0.15±0.01), 
when the distance between TP and EP was lower, 
regardless of the size of the TP, generation 10 for 
TP and generation 11 for EP. On the contrary, the 
higher PEV (0.29±0.02) was obtained when the TP 
included animals from generation 7 and generation 
14 was evaluated. These results are similar to those 
found by Habier et al. (2010), Saatchi et al. (2010) 
and Saatchi et al. (2011), who show that close 
relationships between individuals in TP and EP have 
better predictions than with more distant groups. 
The results also agree with those from Meuwissen et 
al. (2001) and Hayes et al. (2009), who point out 
that the size of the TP also influences the accuracy of 
the prediction of the TGV.

Saatchi et al. (2010) obtained increases in R2 of 
39.7 and 24.2 % when they included generations 51 
to 58 and 55 to 58 in the TP, and the EP was made 
up of females from generation 59 and h2 was 0.5. 
When these authors used h2=0.1, the increases in R2 
were 88.9 % (from 0.112 to 0.2116) and 41.1 % 
(from 0.112 to 0.2116). This effect was also reported 
by Meuwissen et al. (2001) and Saatchi et al. (2012). 
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generación y con el modelo completo, son relativa-
mente bajos, aunque es notoria la manera en que su 
valor disminuye a medida que PEn incluye genera-
ciones más alejadas, de 0.40 a 0.30, y de 0.39 a 0.29 
para las PEn que incluyen solamente la generación 
10 y para la que incluye de la generación siete a la 10, 
con los modelos sin considerar los efectos de sexo y 
número de generación y el completo (Cuadro 4 y 5). 
Estas correlaciones son menores a las encontradas por 
Meuwissen et al. (2001), quienes reportan valores de 
0.318±0.018 a 0.848±0.012, obtenidos con varios 
métodos de predicción de valores genómicos (míni-
mos cuadrados, BLUP, BayesA y BayesB).
	 Los valores en este estudio son similares a los 
obtenidos en ganado Hereford por Saatchi et al. 
(2013), con estimadores de correlaciones genéticas 
entre valores genómicos predichos y DEVG para 
10 características de 0.20±0.06 a 0.52±0.04 con el 
método BayesB, y de 0.18±0.06 a 0.45±0.04 con 
el método BayesC. Además, estos autores reportan 
correlaciones genéticas de 0.13±0.06 a 0.32±0.05 
entre los valores genéticos deregresados y los valores 
genéticos obtenidos con las metodologías tradiciona-
les de evaluación mediante BLUP. En un estudio de 
simulación, Spangler et al. (2007) obtuvieron para 
marmoleo de la carne estimadores de correlaciones 
de 0.256 a 0.859, entre los valores genéticos verda-
deros y los predichos, a partir de conjuntos de datos 
con diferente proporción de información disponible. 

Cuadro 4.	Estimadores de los coeficientes de correlación ge-
nética (rGhat,GV) entre los valores genómicos predi-
chos con el programa Gen-Sel (Ghat) y los valores 
genéticos verdaderos (GV), obtenidos con el mo-
delo sin considerar los efectos de sexo y número de 
generación.

Table 4.	 Estimates of the genetic correlation coefficients 
(rGhat,GV) between the predicted genomic values with 
the Gen-Sel software (Ghat) and the true genetic 
values (TGV), obtained with the model without 
taking into consideration the effects of sex and 
number of generation.

Población de 
entrenamiento

Variable

Ghat GV rGhat,GV

10 0.08 0.36 0.40
9 y 10 0.06 0.37 0.39
8 a 10 0.05 0.37 0.36
7 a 10 0.01 0.40 0.30

Cuadro 5.	 Estimadores de los coeficientes de correlación 
genética (rGhat,GV) entre los valores genómicos pre-
dichos (Ghat) con el programa Gen-Sel (Ghat) y 
los valores genéticos verdaderos (GV), obtenidos 
con el modelo completo

Table 5.	 Estimates of the genetic correlation coefficients 
(rGhat,GV) between the predicted genomic values 
(Ghat) with the Gen-Sel software (Ghat) and the 
true genetic values (TGV), obtained with the 
complete model.

Población de 
entrenamiento

Variable
Ghat GV rGhat,GV

10 0.08 0.38 0.39
9 y 10 0.06 0.38 0.39
8 a 10 0.05 0.38 0.35
7 a 10 0.01 0.39 0.29

These results can be an expression of several factors, 
such as weak genetic bonds between TP and EP, an 
increase in the recombination rate, a change in the 
genotypic structure, and a reduction in the linkage 
disequilibrium between markers and QTLs due to an 
increase in the number of generations between both 
populations (Saatchi et al., 2010).

The estimates for genetic correlation coefficients 
(rGhat,GV) are shown, between the genomic values 
predicted (Ghat) with the Gen-Sel program and the 
true genetic values (TGV), obtained with the model 
without taking into consideration the effects of sex 
and number of generation, and with the complete 
model, are relatively low, although the way in which 
their value decreases as the TP includes more distant 
generations is notable, from 0.40 to 0.30, and from 
0.39 to 0.29 for the TP that includes only generation 
10 and for the one that includes generation seven to 
10, with the models without considering the effects of 
the sex and number of generation and the complete 
one, (Table 4 and 5). These correlations are lower 
than the ones found by Meuwissen et al. (2001), 
who report values of 0.318±0.018 to 0.848±0.012, 
obtained with several prediction methods of genomic 
values (least squares, BLUP, BayesA and BayesB).

The values in this study are similar to those 
obtained in Hereford cattle by Saatchi et al. (2013), 
with genetic correlation estimates between predicted 
genomic values and DEVGs for 10 traits of 
0.20±0.06 to 0.52±0.04 with the BayesB method, 
and 0.18±0.06 to 0.45±0.04 with the BayesC 
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Según Kizilkaya et al. (2010), para una característica 
con heredabilidad de 0.5 y usando aproximadamen-
te 1000 animales en PEn, se obtienen correlaciones 
mayores de 0.8 para características controladas por 
aproximadamente 500 loci, suponiendo que los loci 
causales son conocidos y genotipados.
	 La tendencia a disminuir de los estimadores de 
correlación genética entre los valores genómicos pre-
dichos y los valores genéticos verdaderos es clara, en 
la medida que aumenta la distancia entre PEn y PEV, 
lo cual sucedió en ambos modelos (Cuadros 4 y 5).

Conclusiones

	 Las exactitudes obtenidas con los dos modelos de 
predicción de valores genómicos comparados fueron 
similares.
	 Con los dos modelos de predicción comparados, 
las exactitudes de los valores genómicos predichos 
fueron mayores en la medida que las poblaciones de 
entrenamiento incluyeron más generaciones; esto es, 
que fueron de mayor tamaño. El mismo resultado se 
obtuvo cuando la distancia entre las poblaciones de 
entrenamiento y evaluación era menor. 
	 Las varianzas del error de predicción fueron ma-
yores cuando aumentaba la distancia entre las pobla-
ciones de entrenamiento y evaluación.
	 Los estimadores de las correlaciones genéticas en-
tre los valores genómicos predichos con los modelos 
comparados y los valores genéticos verdaderos fueron 
bajos. La disminución de estos estimadores fue no-
toria a medida que aumentaba la distancia entre las 
poblaciones de entrenamiento y de evaluación.  
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