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Resumen

La modelación del crecimiento de la altura dominante y el 
índice de sitio constituye una herramienta valiosa para clasi-
ficar la productividad de los terrenos forestales y definir estra-
tegias de manejo forestal; la calidad de estación es un criterio 
para definir la programación de las intervenciones silvícolas. 
La derivación de una ecuación dinámica se presenta a par-
tir del modelo base de Chapman-Richards, considerando el 
parámetro de la asíntota y el de la tasa de cambio como una 
función de la calidad de estación. La ecuación dinámica ob-
tenida tiene polimorfismo complejo y múltiples asíntotas y 
fue ajustada para Pinus arizonica, P. durangensis, P. teocote, 
P. leiophylla y P. ayacahuite  juntos y por especie con varia-
bles indicadoras, y se comparó con dos ecuaciones GADA, 
con el mismo número de parámetros. Éstas están basadas en 
los modelos de Chapman Richards y Korf, los cuales han sido 
empleados en la modelación de altura dominante e índice de 
sitio. La comparación indicó que la ecuación derivada pre-
sentó mejor parsimonia en la expresión algebraica que des-
cribe la productividad del sitio y consideró la variabilidad de 
la potencialidad del sitio como una función de la asíntota. La 
ecuación dinámica puede usarse para predecir el crecimiento 
en altura dominante e índice de sitio para las masas mezcla-
das del área de estudio, con tasas de crecimiento similares 
para Pinus durangensis, P. ayacahuite y P. arizonica, lo cual 
responde al grado de asociación entre estas especies; Pinus 
teocote y P. leiophylla presentan las tasas menores de creci-
miento.

Palabras clave: Pinus arizonica, Pinus ayacahuite, Pinus duran-
gensis, Pinus leiophylla, Pinus teocote, GADA.

Abstract

Modeling of dominant height growth and site index is a 
valuable tool for classifying productivity of forest lands and 
for defining forest management strategies; station quality is a 
criterion for defining the programming of forest interventions. 
The derivation of a dynamic equation is presented from the 
base model of Chapman-Richards, considering the parameter 
of the asymptote and of the exchange rate as a function of 
site quality. The dynamic equation obtained has complex 
polymorphism and multiple asymptotes, and was fitted 
for Pinus arizonica, P. durangensis, P. teocote, P. leiophylla 
and P. ayacahuite as a group and by species with dummy 
variables, and was compared with two GADA equations, 
with the same number of parameters. These are based on the 
models of Chapman Richards and Korf, which have been 
used in the modeling of dominant height and site index. The 
comparison indicated that the derived equation presented 
better parsimony in the algebraic expression that describes 
the productivity of the site and considered the variability of 
the potential of the site as a function of the asymptote. The 
dynamic equation can be used to predict dominant height 
growth and site index for the mixed stands of the study area, 
with similar growth rates for Pinus durangensis, P. ayacahuite 
and P. arizonica, that responds to the degree of association 
among these species; Pinus teocote and P. leiophylla present 
the lowest growth rates.

Key words: Pinus arizonica, Pinus ayacahuite, Pinus durangensis, 
Pinus leiophylla, Pinus teocote, GADA.

Introduction

Precise estimations of productivity are a key 
element in forest management, as they 
contribute to the determination of the harvest, 
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Introducción

Las estimaciones precisas de la productividad 
constituyen un elemento clave en el manejo 
forestal, ya que contribuyen a determinar la 

cosecha, el turno y la periodicidad de las intervencio-
nes silvícolas (Torres-Rojo y Valles-Gándara, 2007; 
Vargas-Larreta et al., 2010). La productividad fores-
tal es un concepto biológicamente complejo y que 
en masas forestales se estima indirectamente con el 
uso de modelos de crecimiento en altura dominante 
(Martín-Benito et al., 2008). El crecimiento de altura 
dominante de un rodal monoespecífico y coetáneo 
es poco afectado por la densidad y seguirá un patrón 
determinado que además tiene buena correlación con 
la producción volumétrica (Clutter et al., 1983). Para 
clasificar a los rodales según su productividad, deno-
minada comúnmente calidad de estación o calidad 
de sitio, se utiliza el patrón de crecimiento de altura 
dominante referido a una altura dominante espera-
da a cierta edad. A esta definición “localizada” del 
crecimiento de la altura dominante se le denomina 
índice de sitio (Vanclay, 1994; Martín-Benito et al., 
2008). Una caracterización eficaz de la calidad de si-
tio contribuye al manejo forestal sustentable, facilita 
la identificación y clasificación de la productividad 
del sitio, así como a la actualización y proyección de 
inventarios forestales y a la planeación de las inter-
venciones silvícolas (Cieszewski et al., 2000a; Vargas-
Larreta et al., 2010).
	 Los modelos de índice de sitio requieren de un 
modelo de crecimiento, el cual se reestructura para 
reflejar la condición específica del crecimiento de la 
altura dominante. Bailey y Clutter (1974) formali-
zaron una técnica conocida como el Método de Di-
ferencias Algebraicas para derivar ecuaciones diná-
micas a partir de modelos de crecimiento (Algebraic 
Difference Approach o ADA), que involucra esen-
cialmente la sustitución de un parámetro del modelo 
base para expresarlo como una función del sitio. Este 
enfoque permite construir modelos invariantes de la 
edad base e invariantes del camino de simulación. La 
limitación principal de la metodología ADA es que 
los modelos derivados son anamórficos o polimórfi-
cos, es decir, la hipótesis específica sólo permite variar 
la potencialidad máxima o las tasas de crecimiento, 
pero no pueden variar ambas (Bailey y Clutter, 1974; 
Cieszewski y Bailey, 2000). El método de las ecuacio-
nes en Diferencia Algebraica Generalizada (GADA 

the rotation and periodicity of forestry interventions 
(Torres-Rojo y Valles-Gándara, 2007; Vargas-Larreta 
et al., 2010). Forest productivity is a biologically 
complex concept and is estimated in forest masses 
indirectly with the use of models of dominant height 
growth (Martín-Benito et al., 2008). Dominant 
height growth of a monospecific and even-aged 
stand is little affected by density and will follow a 
determined pattern which also has a good correlation 
with volumetric production (Clutter et al., 1983). 
To classify the stands according to their productivity, 
commonly known as site quality, the dominant 
height growth pattern is used, referring to a dominant 
height expected at a certain age. In this “localized” 
definition of dominant height growth, it is called site 
index (Vanclay, 1994; Martín-Benito et al., 2008). An 
effective characterization of site quality contributes 
to sustainable forest management, facilitates the 
identification and classification of the productivity of 
the site, and the actualization and projection of forest 
inventories and planning of forest interventions 
(Cieszewski et al., 2000a; Vargas-Larreta et al., 2010).

Site index models require a growth model, which 
is restructured to reflect the specific condition of the 
dominant height growth. Bailey and Clutter (1974) 
formalized a technique known as the Algebraic 
Difference Approach (ADA) for deriving dynamic 
equations from growth models, which involves 
essentially the substitution of a parameter of the 
base model to be expressed as a function of the 
site. This approach makes it possible to construct 
invariant models, base-age invariance and simulation 
path invariance. The principal limitation of the 
ADA methodology is that the derived models are 
anamorphic or polymorphic, that is, the specific 
hypothesis only permits the variation of maximum 
potentiality or growth rates, but cannot vary both 
(Bailey and Clutter, 1974; Cieszewski and Bailey, 
2000). The method of the equations in Generalized 
Algebraic Difference Approach (GADA) considers 
that the base equation can be expanded to permit that 
more than one parameter depends on the site quality 
(Cieszewski, 2001). With the GADA methodology 
it is possible to obtain families of curves which are 
polymorphic and with multiple asymptotes, and 
preserve the logical properties base-age invariance 
and simulation path invariance (Cieszewski, 2003).

The principal challenge in the development 
of dynamic equations with the GADA approach 
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por sus siglas en inglés), considera que la ecuación 
base puede ser expandida para permitir que más 
de un parámetro dependa de la calidad de estación 
(Cieszewski, 2001). Con la metodología GADA se 
pueden obtener familias de curvas que, a la vez sean 
polimórficas y con asíntotas múltiples, y preservar 
las propiedades lógicas de ser invariantes de la edad 
de referencia y con respecto al camino de simulación 
(Cieszewski, 2003).
	 El reto principal en el desarrollo de ecuaciones 
dinámicas con el enfoque GADA depende de la dis-
ponibilidad de soluciones analíticas para la variable 
dependiente de la calidad de estación y, por tanto, el 
número de derivaciones posibles es limitado (Cies-
zewski y Strub, 2008).
	 El ajuste de ecuaciones dinámicas requiere de in-
formación recolectada en un mínimo de dos condi-
ciones de estado diferentes y la información puede 
ser obtenida a través de medidas repetidas en parcelas 
permanentes de muestreo o de análisis troncales, re-
construyendo el crecimiento de los árboles con los 
anillos anuales de crecimiento (Diéguez-Aranda et 
al., 2006).
	 Los objetivos del presente estudio fueron: 1) de-
rivar y plantear una ecuación dinámica en forma 
GADA a partir de la ecuación base de Chapman-
Richards (Richards, 1959), 2) comparar la ecuación 
desarrollada con dos formas GADA, la primera basa-
da en el modelo de Chapman-Richards (Krumland 
y Eng, 2005), y la segunda en el modelo de Korf 
(Barrio-Anta et al., 2006; Sharma et al., 2011) y 3) 
ajustar la ecuación dinámica en forma global (mo-
delo reducido) y compararla con el uso de variables 
indicadoras (modelo completo) para determinar di-
ferencias y similitudes estadísticas en los patrones de 
crecimiento de las especies estudiadas.

Materiales y Métodos

Descripción del área de estudio y datos utilizados

	 La base de datos utilizada se recolectó en masas forestales del 
Ejido San Diego de Tezains, en el Estado de Durango, México, 
en la Sierra Madre Occidental (24º 48’ 16.98”, 25º 13’ 47.25” 
N y 105º 53’ 09.81”, 106º 12’ 52.58” O). Los tipos de climas 
predominantes del sitio son templado, cálido húmedo y templa-
do subhúmedo, con precipitación media anual de 1375 mm. Las 
temperaturas medias varían de 8 °C en las zonas más altas a 24 °C 
en las zonas bajas, en las cuales la altitud media llega a 600 m. 

depends on the existence of analytical solutions for 
the dependent variable of site quality, and therefore, 
the number of possible derivations is limited 
(Cieszewski and Strub, 2008).

The fitting of dynamic equations requires 
information collected under a minimum of two 
conditions of different state, and the information can 
be obtained through measures repeated in permanent 
plots of sampling or stem analysis, reconstructing 
tree growth with the annual growth rings (Diéguez- 
Aranda et al., 2006).

The objectives of the present study were as 
follows: 1) to derive and state a dynamic equation in 
GADA form from the base equation of Chapman-
Richards (Richards, 1959), 2) to compare the 
equation developed with two GADA equations, the 
first based on the Chapman-Richards (Krumland 
and Eng, 2005), and the second in the Korf model 
(Barrio-Anta et al., 2006; Sharma et al., 2011) and 3) 
to fit the global dynamic equation (reduced model) 
and compare the equation with dummy variables 
(full model) to determine statistical differences and 
similarities in the growth patterns of the species 
studied.

Materials and Methods

Description of the study area and utilized data

The database was collected in forest stands of the Ejido 
San Diego de Tazains, in the state of Durango, México, in the 
Western Sierra Madre (24° 48’ 16.98”, 25° 13’ 47.25” N and 
105° 53’ 09.81”, 106° 12’ 52.58” W). The predominant types 
of climate of the site are temperate, warm humid and temperate 
sub-humid, with mean annual rainfall of 1375 mm. Mean 
temperatures vary from 8 °C in the highest zones to 24 °C in 
the low zones, in which the mean altitude reaches 600 m. Total 
surface of the study area is 62,802 ha, of which 26 038 have 
forest management.

The database that was used has 707, 948, 691, 441 and 
348 measurements of height and age of 45, 67, 49, 29 and 24 
dominant-co-dominant trees cut and evaluated as stem analysis 
for Pinus arizonica Engelm, Pinus durangensis Mart., Pinus 
teocote Schl. et Cham., Pinus leiophylla Schl. et Cham and Pinus 
ayacahuite Ehrenb. The data were collected in the mixed stands of 
the study area, including the different site qualities and diametric 
categories present in the area with forest management. To obtain 
the pairs of height-age in each one of the trees, the procedure 
proposed by Carmean (1972) was used, which is efficient for this 
type of analysis.



VOLUMEN 49, NÚMERO 4442

AGROCIENCIA, 16 de mayo - 30 de junio, 2015

La superficie total del predio es 60,802 ha, de las cuales 26 038 
tienen manejo forestal.
	 La base de datos que se utilizó tiene 707, 948, 691, 441 y 
348 mediciones de altura y edad de 45, 67, 49, 29 y 24 árboles 
dominantes-codominantes derribados y evaluados como análisis 
troncales para Pinus arizonica Engelm, Pinus durangensis Mart., 
Pinus teocote Schl. Et Cham., Pinus leiophylla Schl. Et Cham y 
Pinus ayacahuite Ehrenb. Los datos fueron recolectados en las 
masas mezcladas del predio, incluidas las diferentes calidades de 
estación y las categorías diamétricas presentes en el área con ma-
nejo forestal. Para obtener los pares de altura-edad en cada uno 
de los árboles, se utilizó el procedimiento propuesto por Car-
mean (1972), que es eficiente para este tipo de análisis.

Ecuación propuesta

	 El desarrollo de una ecuación dinámica en forma GADA 
considera los siguientes pasos: 1) se selecciona una ecuación base 
y se identifican los parámetros de la ecuación que serán depen-
dientes de la productividad del sitio; 2) los parámetros selec-
cionados se expresan como funciones de la calidad de estación 
definida por la variable c (variable no observable e independien-
te que describe la productividad del sitio como resultado de la 
suma de factores ecológicos, climáticos y otros, como regímenes 
de manejo y condiciones del suelo) y los parámetros nuevos; 3) 
la ecuación base bidimensional seleccionada es expandida a una 
ecuación tridimensional de índice de sitio, y 4) se despeja el valor 
de c a partir de condiciones iniciales de la estación, es decir, de 
valores de partida de altura y edad, de forma que el modelo pue-
da ser definido implícitamente y aplicado en la práctica (Cies-
zewski y Bailey, 2000; Cieszewski, 2002).
	 El modelo de Chapman-Richards (Richards, 1959) es flexi-
ble y ha sido utilizado ampliamente en la construcción de curvas 
de índice de sitio e incremento de la altura en relación con la 
edad, es representado como:

H t ei
t( , ) ( )     

1 1 2 3 	 (1)

donde H es la altura dominante, t la edad, a1 es el parámetro que 
representa la asíntota horizontal, a2 la tasa de crecimiento, a3 la 
tasa de cambio y e la función exponencial.
	 Se asume que los parámetros que representan la asíntota y 
la tasa de cambio pueden ser expresados como funciones de la 
calidad de estación, definidos por la variable c, de acuerdo a un 
modelo lineal inverso (Kiviste et al., 2002), representados como 
m y b, para a1 y a3 (Cieszewski y Strub, 2008). La función lineal 
inversa considera que hipotéticamente los parámetros pueden ser 

Proposed equation

The development of a dynamic equation in GADA form 
considers the following steps: 1) a base equation is selected 
and the parameters of the equation are identified, which will 
be dependent on the productivity of the site 2) the selected 
parameters are expressed as functions of the station quality 
defined by the variable c (non-observable and independent 
variable that describes the productivity of the site as the result 
of the sum of ecological, climatic and other factors, such as  
management regimes and soil conditions) ; 3) the selected bi-
dimensional base equation is expanded to a tridimensional 
equation of site index, and 4) the value of c is cleared from initial 
conditions of the station, that is, from initial values of height and 
age, so that the model can be implicitly defined and applied in 
practice (Cieszewski and Bailey, 2000; Cieszewski, 2002).

The model of Chapman-Richards (Richards, 1959) is flexible 
and has been widely used in the construction of site index curves 
and of increment of height with respect to age, and is represented 
as follows:

H t ei
t( , ) ( )     

1 1 2 3 	 (1)

where H is the dominant height, t the age, a1 is the parameter 
that represents the horizontal asymptote, a2 is the growth rate, a3 
the exchange rate and e is the exponential function.

It is assumed that the parameters represented by the 
asymptote and exchange rate can be expressed as functions 
of the site quality, defined by the variable c, according to an 
inverse linear model (Kiviste et al., 2002), represented as m 
and b, for c1 and c3 (Cieszewski and Dtrub, 2008). The inverse 
linear function considers that hypothetically the parameters can 
be modeled as a function of the inverse of the non-observable 
variable, which represents site quality, which has not been 
studied for the derivation of dynamic equations, expressed as: 

m x m m
x

( )  1 2
1  y 

b x b b
x

( )  1 2
1 .

     The GADA equation, with variable growth rates and 
multiple asymptotes when b1=0, b2=1 and renaming parameter 
a2 as b3 to be expressed as parameter of dynamic equations of 

growth  
 

1

1
1 2

( )
( )

x e x


, 3
1

( )x
x

   and  2 3 ,  

re-parametrizing the expression (1) and in the initial state 

H f t i0 0 , , a f  will be:
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modelados en función de la inversa de la variable no observable, 
que representa la calidad de estación, la que no ha sido estudia-
da para la derivación de ecuaciones dinámicas, expresada como; 

m x m m
x

( )  1 2
1  y 

b x b b
x

( )  1 2
1 .

	 La ecuación GADA, con tasas de crecimiento variables y 
múltiples asíntotas cuando b1=0, b2=1 y renombrando el paráme-
tro a2 como b3 para ser expresado como parámetro de ecuaciones 

dinámicas de crecimiento 
 

1

1
1 2

( )
( )

x e x


, 3
1

( )x
x

  y 

 2 3 ,  reparametrizando la expresión (1) y en el estado ini-

cial H f t i0 0 , , a f  será:

H t e ei
t

0 0

1 1
1 2

3 01( , , ) 
 

   


F
HG

I
KJ d i

	 (2)

Tomando logaritmos naturales para ambos lados de la ecua-
ción (semi–linealizada) (2), expresada en (3).

ln lnH e ex t x
0

1 1
1 2

3 01a f d i 
L

N
M
MM

O

Q
P
PP


F
HG

I
KJ 

 


	 (3)

Resolviendo para c se encontró la expresión dada por (4).

x
e

H

t


 



ln

ln

1 3 0
2

0 1

 



d i
a f 	 (4)

Sustituyendo en el estado H f t x i1 1 , , a f  se obtiene 
la derivación de la ecuación dinámica basada en la ecuación de 
Chapman-Richards, la cual provee familias de curvas con poli-
morfismo complejo, dada por la siguiente expresión:

H t t H e ei
x t x

1 0 1 0

1 1
1 2

3 11, , , 
 

a f d i 


F
HG

I
KJ   	 (E1)

La ecuación dinámica de crecimiento GADA posee un pun-
to de inflexión a la edad t1 y una expresión del incremento co-
rriente anual de la altura dominante (ICA), dados en (5) y (6).

t1
3

 
ln 



a f
	 (5)

H t e ei
t

0 0

1 1
1 2

3 01( , , ) 
 

   


F
HG

I
KJ d i

	 (2)

Taking natural logarithms for both sides of the equation 
(semi-linearized) (2) expressed in (3):

ln lnH e ex t x
0

1 1
1 2

3 01a f d i 
L

N
M
MM

O

Q
P
PP


F
HG

I
KJ 

 


	 (3)

Resolving parameter c, the expression given by (4) was 
found:

x
e

H

t


 



ln

ln

1 3 0
2

0 1

 



d i
a f 	 (4)

     Substituting in the state H f t x i1 1 , , a f , the derivation 
of the dynamic equation is obtained based on the Chapman-
Richards equation, which provides families of curves with 
complex polymorphism, give by the following expression:

H t t H e ei
x t x

1 0 1 0

1 1
1 2

3 11, , , 
 

a f d i 


F
HG

I
KJ   	 (E1)

     The dynamic equation of growth GADA has an inflection 
point at age t1 and an expression of the annual current increment 
of dominant height (ICA), given in (5) and (6):

t1
3

 
ln 



a f
	 (5)

ICA
e e e

e
H

t t

t1

1 2
3 1 3 1

3 1

1

31

1







F
HG

I
KJ  



 
  







d i
d i 	 (6)

The derived equation was compared with the global 
fitting for all of the species, with two dynamic equations used 
frequently for their flexibility in modeling dominant height. The 
first GADA equation used for the comparison of the proposed 
expression is based on equation (1), when a1 and a3 are assumed 
as dependents of the variable c. To facilitate the derivation of 
the dynamic equation, the base model is re-parametrized taking 

as  1  e x ,  


2 2
3 
x

 and  3 1 . Considering the 
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ICA
e e e

e
H

t t

t1

1 2
3 1 3 1

3 1

1

31

1







F
HG

I
KJ  



 
  







d i
d i

	 (6)

	 La ecuación derivada fue comparada con el ajuste global para 
todas las especies, con dos ecuaciones dinámicas usadas frecuen-
temente por su flexibilidad en la modelación de altura dominan-
te. La primera ecuación GADA utilizada para la comparación 
de la expresión propuesta está basada en la ecuación (1), cuando 
a1 y a3 se asumen como dependientes de la variable c. Para fa-
cilitar la derivación de la ecuación dinámica, el modelo base es 

reparametrizado tomando como 1  e x ,  


2 2
3 
x

 y 

 3 1 . Considerando la ecuación en la condición inicial t0 y 

H0 dado por (7) y aplicando logaritmos naturales a ambos lados, 
la formulación es dada por (8).
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	 La solución para c implica encontrar la raíz de una ecuación 
de segundo grado y seleccionar la raíz positiva para sustituir en la 
ecuación dinámica (Cieszeski y Bailey, 2000). La solución para c 
de la expresión (8) es dada en (9).


 


  ln lnH e t

0 2 1

2

1 0d i

[ ln ln( )H e t
0 2

2
1

2

1 0   d i

  4 1
2

3
1 21 0 ln( )] /e t

	 (9)

	 Asumiendo la ecuación (8) en el estado t1 y H1 y despejando 
ec, resulta la siguiente ecuación dinámica que presenta curvas po-
limórficas con asíntotas variables (Krumland y Eng, 2005).
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equation in initial condition t0 and H0 given by (7) and applying 
natural logarithms to both sides, the formulation is given by (8):
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     The solution for c implies finding the root of a second grade 
equation and selecting the positive root to substitute in the 
dynamic equation (Cieszeski and Bailey, 2000). The solution for 
c of expression (8) is given in (9):
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	 (9)

Assuming equation (8) in state t1 and H1 clearing ec, the 
following dynamic equation results which presents polymorphic 
curves with variable asymptotes (Krumland and Eng, 2005).
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     The second equation used is based on the base model (10) of 
Korf (1939), where a1 is the asymptote, a2 and a3 refer to the 
inflection point and growth rate and e is the base of the natural 
logarithms.

H e
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1
2 3d i 	 (10)

The parameters a1 and a2 are assumed dependents of the 

variable c, given by   
1  e  and 

 

2
1 2

a f ; changing 

 2 3  and assuming the expression in the initial condition 
H0 and t0, equation (11) remains.
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	 La segunda ecuación utilizada se basa en el modelo base (10) 
de Korf (1939), donde a1 es la asíntota, a2 y a3 refieren al punto 
de inflexión y la tasa de crecimiento y e es la base de los logarit-
mos naturales.

H e
t
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
 

1
2 3d i 	 (10)

	 Los parámetros a1 y a2 se asumen dependientes de la va-

riable c, dados por  
1  e  y 

 

2
1 2

a f ; cambiando 

 2 3  y asumiendo la expresión en la condición inicial H0 y 
t0, queda la ecuación (11).

H e e

t

0

1 2 3



 F
HG

I
KJ





 


a f

	 (11)

	 La solución para c (12), que al incorporarla a la ecuación 
(11) en el estado H1 y t1, resulta la ecuación (E3), la cual presenta 
curvas polimórficas con asíntotas variables (Barrio-Anta et al., 
2006; Sharma et al., 2011).
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Estadísticos de ajuste para comparación de modelos

	 La bondad de ajuste de los modelos se midió a través del 
análisis numérico y gráfico de residuales y además se analizaron 
gráficamente las predicciones del modelo para revisar si eran 
biológicamente adecuadas a los datos utilizados (Goelz y Burk, 
1992; Sharma et al., 2011).
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     The solution for c (12), which by incorporating it to equation 
(11) in state H1 and t1, gives equation (E3), which presents 
polymorphic curves with variable asymptotes (Barrio-Anta et al., 
2006; Sharma et al., 2011).
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Statistics of adjustment for comparison of models

The goodness of fit of the models was measured through 
numerical and graphic analysis of residuals and in addition the 
predictions of the model were analyzed graphically to check if 
they were biologically adequate to the data used (Goelz and 
Burk, 1992; Sharma et al., 2011). 
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Raíz del cuadrado medio del error
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Criterio de información de Akaike (Lu y Zhang, 2011)
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Prueba estadística de F (Washington et al., 2011)
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donde yi, y  e y  son los valores observado, predicho y medio 
de la altura, n es el número de observaciones, p es el número de 
parámetros del modelo, ei el valor residual del modelo ajustado, 
F* es el valor de la prueba estadística que sigue una distribución 
F, SSER y SSEF son la suma de cuadrados del error de los modelos 
reducido y completo y dfR y dfF son los grados de libertad de los 
modelos reducido y completo, respectivamente.

Ajuste de los parámetros

	 Los parámetros globales y específicos del sitio fueron ajusta-
do simultáneamente a través del procedimiento iterativo (nested 
iterative procedure) descrito por Tait et al. (1988); este proce-
dimiento genera resultados adecuados cuando se usan bases de 

Information criterion of Akaike (Lu and Zhang, 2011)
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where yi, y  and y  are the observed values, predicted and mean 
of height, n is the number of observations, p is the number of 
parameters of the model, ei is the residual value of the fitted model, 
F* is the value of the statistical test that follows a distribution F, 
SSER and SSEF are the sum of squares of the error of the reduced 
and complete model and dfR and dfF are the degrees of freedom 
of the reduced and complete model, respectively.

Fit of the parameters

The global and specific parameters of the site were fitted 
simultaneously by means of the iterative procedure (nested 
iterative procedure) described by Tait et al. (1988); this 
procedure generates adequate results when databases with more 
than 800 pairs of height-age values are used (Cieszewski,2003; 
Krumland and Eng, 2005). Cieszewski et al. (2000b) indicate 
that this approach is similar to modeling with mixed effects, but 
the specific parameters are not explicitly modeled.

The models were fitted using in the residuals a continuous 
autoregressive structure (CAR(x)) of the third order for each 
tree, to correct the autocorrelation of the term of the error 
(Zimmerman and Núñez-Antón, 2001; Nord-Larsen, 2006; 
Crecente-Campo et al., 2009) and to obtain unbiased and 
efficient estimators of the parameters (Parresol and Vissage, 
1998).
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where eij is the ordinary j residual in the observation i, eij-k is the 
j-k ordinary residual of the observation i, ik = 1 when j>k and 
0 when j£k, rk is the order k of the continuous autoregressive 
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datos con más de 800 pares de valores altura-edad (Cieszewski, 
2003; Krumland y Eng, 2005). Cieszewski et al. (2000b) indican 
que este enfoque es similar a la modelación con efectos mixtos, 
pero los parámetros específicos no son modelados explícitamente.
	 Los modelos fueron ajustados usando en los residuales una 
estructura autoregresiva continua (CAR(x)) de tercer orden para 
cada árbol, para corregir la autocorrelación del término del error 
(Zimmerman y Núñez-Antón, 2001; Nord-Larsen, 2006; Cre-
cente-Campo et al., 2009) y obtener estimadores de los paráme-
tros insesgados y eficientes (Parresol y Vissage, 1998).

e I eij k k
h h

k

k

ij k ij
ij ij k  








 

1

3

donde eij es el j residual ordinario en la observación i, eij-k es el 
j-k residual ordinario de la observación i, Ik = 1 cuando j>k y 0 
cuando j£k, rk es el orden k del parámetro autorregresivo con-
tinuo a ser estimado y hij–hij-k es la distancia de separación de la 
observación de la altura j a la j-k en cada árbol i, con hij>hij-k. 
Así Îij es el error independiente que sigue una distribución nor-
mal con media cero y varianza constante.

	 Para reducir los efectos por heterocedasticidad, la varianza 
del error fue asumida como una función de potencia de la altura 
predicha (Huang et al., 2000; Diéguez-Aranda et al., 2006). El 
factor de ponderación utilizado fue w Hi

k 

1 , donde k es una 
constante que tomó el valor de 0.05, para lograr la homogenei-
dad de los residuales y la consistencia de los estimadores de los 
parámetros.
	 Para ajustar la ecuación dinámica propuesta, diferenciando 
el crecimiento entre especies (para los parámetros globales), se 
usaron variables indicadoras y a Pinus durangensis como la espe-
cie base, por que presenta el número mayor de observaciones; las 
variables indicadoras fueron definidas como sigue:

Ii
sp j 

0
1
 de otra manera
 si  o

donde Ij representa la variable indicadora para cada especie (sp), 
j=2 Pinus arizonica, 3 P. teocote, 4 P. leiophylla y 5 P. ayacahuite.

	 Los parámetros de la expresión (E1) fueron replanteados en 
función de las variables indicadoras, los efectos aditivos son de las 
especies diferentes a P. durangensis, de forma tal que cada paráme-
tro global  i  se puede escribir de manera general como:

     i i i i i iI I I I    1 2 2 3 3 4 4 5 5

parameter to be estimated and hij-hij–k is the distance of separation 
of the observation of the height j to the j-k in each tree i, with 
hij>hij – k. Thus Îij is the independent error that follows a normal 
distribution with mean zero and constant variance.

To reduce the effects from heterocedasticity, the variance of 
the error was assumed as a function of power of the predicted 
height (Huang et al., 2000; Diéguez-Aranda et al., 2006). The 
factor of weighting used was w Hi

k 

1 , where k is a constant 
that took the value of 0.05, to achieve the homogeneity of the 
residuals and the consistency of the estimators of the parameters.

To fit the proposed dynamic equation, differentiating the 
growth among species (for the global parameters), dummy 
variables were used and Pinus durangensis as the base species, 
because it presents the highest number of observations; the 
dummy variables were defined as follows:

Ii
sp j 

0
1
 de otra manera
 si  o

where Ij represents the dummy variable for each species (sp), j = 
2 Pinus arizonica, 3 P. teocote, 4 P. leiophylla and 5 P. ayacahuite.

The parameters of the expression (E1) were restated as 
a function of the dummy variables, the additive effects are of 
the species different from P. durangensis, so that each global 
parameter  i  can be written in a general form as:

     i i i i i iI I I I    1 2 2 3 3 4 4 5 5

For i = 1, 2, 3 of the parameters of the derived equation. The 
full model with the use of dummy variables is given by E4, which 
only considers the significant parameters at a significance level of 
5 % for the species studied.
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	 (E4)

The dynamic equations of height growth, plus the structure 
of the third order autoregressive model, the function of power 
of the variance of the error and the dummy variables for the 
proposed model, were programmed and fitted simultaneously 
with the MODEL procedure of SAS/ETSR (SAS Institute Inc., 
2011), which permits the dynamic actualization of the residuals.
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	 Para i = 1, 2, 3 de los parámetros de la ecuación dinámica de-
rivada. El modelo completo con el uso de variables indicadoras es 
dado por E4, el cual sólo considera los parámetros significativos a 
un nivel de significancia del 5 % para las especies estudiadas.
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	 Las ecuaciones dinámicas de crecimiento en altura, más la 
estructura del modelo autorregresivo de tercer orden, la función 
de potencia de la varianza del error y las variables indicadoras 
para el modelo propuesto, fueron programadas y ajustadas simul-
táneamente con el procedimiento MODEL de SAS/ETSR (SAS 
institute Inc., 2011), que permite la actualización dinámica de 
los residuales.

Resultados y Discusión

	 Los parámetros estimados, sus errores estándar y 
los estadísticos de ajuste se obtuvieron para todos los 
pares de edad altura (combinando todas las especies) 
(Cuadro 1). La bondad de ajuste y los parámetros 
estimados para el modelo propuesto con variables 
indicadoras con Pinus durangensis como base se pre-
sentan en el Cuadro 2. Sólo se utilizaron los paráme-
tros significativos por especie del modelo completo. 
La prueba de F indicó que el modelo completo (E4) 
fue significativamente diferente al modelo reducido 
(E1) con un valor de rechazo menor al 1% (Pr|F| 
<0.0001).

Cuadro 1.	 Parámetros estimados, error estándar y estadísticos de ajuste (definidos previamente) de las ecuaciones dinámicas 
ajustadas a todos los pares de altura-edad.

Table 1.	Estimated parameters, standard error and statistics of fit (previously defined) of the dynamic equations fitted to all of the 
pairs of height-age.

Ecuación b1 b2 b3 r1 r2 r3 R2a RMSE 
(m) E (m) CV AIC dw

E1 qi
5.010 -1.04 0.020 0.990 0.890 0.79 0.992 0.60 0.04 6.73 -3200 1.83

ei
0.150 0.10 0.001 0.010 0.010 0.01

E2 qi
0.020 0.32 3.550 1.150 0.950 0.86 0.996 0.40 0.03 4.50 -5695 1.62

ei
0.001 0.08 0.201 0.010 0.012 0.01

E3 qi
-2.172 54.59 0.450 0.990 0.880 0.79 0.992 0.60 0.05 6.76 -3163 1.81

ei
0.140 0.88 0.020 0.010 0.010 0.01

qi y ei: estimador y error estándar de los parámetros de las ecuaciones dinámicas v qi and ei: estimator and standard error of the param-
eters of the dynamic equations.

Results and Discussion

The estimated parameters, their standard errors 
and the statistics of fit were obtained for all of the 
pairs of age-height (combining all of the species) 
(Table 1). The goodness of fit and the estimated 
parameters for the proposed model with dummy 
variables with Pinus durangensis as base are shown in 
Table 2. Only the significant parameters per species 
were used of the full model. The F test indicated that 
the full model (E4) was significantly different from 
the reduced model (E1) with a  rejection rate lower 
than 1 % (Pr|F|<0.0001).

The families of growth curves of the height 
obtained with the full model (E4) taking categories 
of site indices of 8 to 24 m, with intervals of 4 m 
for Pins arizonica, P. durangensis, P. teocote and P. 
ayacahuite and of 8 to 20 m for P. leiophylla, at a 
base-age of 60 years, show the tendencies of the data 
utilized (Figure 1).
     Because the base equation does not have an 
algebraic expression of the absolute rotation (age at 
which the ICA and IMA are equal), the dynamic 
equation also does not present this attribute. The 
absolute rotation for the categories of site index 
were iteratively obtained by the difference between 
the ICA and IMA, giving values to the age and 
stabilizing the iterations in values close to zero. With 
the families of curves of ICA and IMA, the age with 
maximum production can be known (rotation of 
maximum yield in height) in height growth, referred 
to categories of site index (Figure 2). Table 3 shows 
the values of age at which the absolute rotation occurs 
by categories of site index at the base-age of 60 years.
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	 Las familias de curvas de crecimiento de la altu-
ra obtenidas con el modelo completo (E4) tomando 
categorías de índices de sitio de 8 a 24 m, con inter-
valos de 4 m para Pinus arizonica, P. durangensis, P. 
teocote y P. ayacahuite y de 8 a 20 m para P. leiophylla, 
a una edad de referencia de 60 años, muestran las 
tendencias de los datos utilizados (Figura 1).
	 Debido a que la ecuación base no tiene una ex-
presión algebraica del turno absoluto (edad a la cual 
el ICA y el IMA son iguales), la ecuación dinámica 
tampoco presenta esta cualidad. Los turnos absolutos 
para las categorías de índice de sitio fueron obtenidos 
iterativamente por la diferencia entre el ICA e IMA, 
dando valores a la edad y estabilizando las iteraciones 
en valores cercanos a 0. Con las familias de curvas 
de ICA e IMA puede conocerse la edad con máxima 
producción (turno de máximo rendimiento en altu-
ra) en crecimiento en altura, referido a categorías de 
índice de sitio (Figura 2). En el Cuadro 3 se presen-
tan los valores de la edad a la cual sucede el turno 
absoluto por categorías de índice de sitio a la edad de 
referencia de 60 años.
	 La tendencia de los residuales estandarizados en 
función de la altura predicha no evidenció heteroce-
dasticidad, y mostró el sesgo promedio por categoría 
de edad del ajuste del modelo completo con variables 
indicadoras para las especies estudiadas (Figura 3).
	 La solución para c que describe la productividad 
del sitio asociada a los parámetros de la ecuación 

Cuadro 2. Parámetros estimados, error estándar y estadísticos de ajuste (definidos previamente) del modelo completo.
Table 2. Estimated parameters, standard error and statistics of fit (previously defined) of the full model.

Modelo bi qi ei Pr|t| R2a RMSE (m) E (m) CV AIC dw

E4 b1(1)
5.261 0.181 <0.0001 0.993 0.59 0.04 6.62 -3284 1.86

b1(2)
0.208 0.070 0.0031

b1(5)
0.400 0.086 <0.0001

b2(1)
-1.224 0.124 <0.0001

b3(1)
0.016 0.001 <0.0001

b3(2)
0.010 0.001 <0.0001

b3(3)
0.007 0.001 <0.0001

b3(4)
0.003 0.001 0.0052

r1
0.994 0.011 <0.0001

r2
0.883 0.010 <0.0001

r3
0.785 0.011 <0.0001

bi, qi y ei: parámetro, estimador y error estándar de los parámetros de la ecuación dinámica con variables indicadoras; Pr|t|: valor de 
probabilidad de la distribución t de Student v bi, qi and ei: parameter, estimator and standard error of the parameters of the dynamic 
equation with dummy variables; Pr|t|: value of probability of the t distribution of Student.

     The tendency of the standardized residuals as 
a function of predicted height did not evidence 
heterocedasticity, and showed the average bias per 
age category of the fit of the full model with dummy 
variables for the species studied (Figure 3).
     The solution for c that describes the productivity 
of the site associated with the parameters of the 
dynamic equation, represents a mathematically 
simpler expression than the solution of the contrasted 
models (Cieszewski and Bailey, 2000), thus the 
proposed equation (E1) can be considered to have 
more parsimony in the mathematical expression than 
the equation reported by Krumland and Eng (2005), 
based on the Chapman-Richards model, and that 
studied by Barrio-Anta et al. (2006) and Sharma et 
al. (2011), based on the Korf model. The derivation 
of the dynamic equation (E1) is centered on the 
parameter represented by the asymptote of the base 
model and not the parameter of the growth rate.
     The equation (E1) generated families of growth 
curves with complex polymorphism, presented a 
point of inflection, was invariant with the base-age, 
was invariant with the simulation path and coincided 
with the data used in the fit (Cieszewski and Bella, 
1989; Cieszewski, 2003; Cieszewski and Strub, 2008; 
Álvarez-González et al., 2010; Vargas-Larreta et al., 
2010). The derived equation conserved the number 
of parameters of the base equation and allowed the 
modeling of dominant height growth and site index.
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dinámica, representa una expresión matemática-
mente más sencilla que la solución de los modelos 
contrastados (Cieszewski y Bailey, 2000), por lo que 
la ecuación propuesta (E1) se puede considerar con 
mejor parsimonia en la expresión matemática que 
la ecuación reportada por Krumland y Eng (2005), 
basada en el modelo Chapman-Richards, y la estu-
diada por Barrio-Anta et al. (2006) y Sharma et al. 
(2011), basada en el modelo de Korf. La derivación 
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Figura 1.	Familias de curvas de crecimiento de la altura domi-

nante para categorías de índice de sitio de 8, 12, 16, 
20 y 24 m para Pinus arizonica (Pa), Pinus duran-
gensis (Pd), Pinus teocote (Pt) y Pinus ayacahuite 
(Pay) y categorías de índice de sitio de 8, 12, 16 y 
20 m para Pinus leiophylla (Pl).

Figure 1.	 Families of growth curves of dominant height for 
categories of site index of 8, 12, 16, 20 and 24 m 
for Pinus arizonica (Pa), Pinus durangensis (Pd), 
Pinus teocote (Pt) and Pinus ayacahuite (Pay) and 
categories of site index of 8, 12, 16 and 20 m for 
Pinus leiophylla (Pl).

     In the global fit (without distinction among species), 
the model (E2) was slightly superior, followed by 
(E1) and (E3) (Table 1). The model (E1) had an 
autoregressive structure of third order errors slightly 
superior in the correction of the autocorrelation of 
the errors, with value of 1.83 of the Durbin-Watson 
statistic, correcting with it the autocorrelation.
     The fit of the dynamic equation (E4), with the 
use of dummy variables for the five species studied, 
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de la ecuación dinámica (E1) se centra en el paráme-
tro que representa la asíntota del modelo base y no el 
parámetro de la tasa de crecimiento.
	 La ecuación (E1) generó familias de curvas de cre-
cimiento con polimorfismo complejo, presentó un 
punto de inflexión, fue invariante con la edad base, 
fue invariante con el camino de simulación y coin-
cidió con los datos usados en el ajuste (Cieszewski y 
Bella, 1989; Cieszewski, 2003; Cieszewski y Strub, 
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Figura 2.	 Familias de curvas de incremento corriente anual de 
la altura (ICA), línea continua, e incremento medio 
anual (IMA), línea discontinua, considerando cate-
gorías de índice de sitio de 8, 12, 16, 20 y 24 m.

Figure 2.	 Families of annual current increment of height 
(ICA), continuous line, and annual mean 
increment (AMI), dotted line, considering site 
index categories of 8, 12, 16, 20 and 24 m.

showed that the highest growth rates were presented 
by Pinus durangensis, P. ayacahuite and P. arizonica, 
whereas Pinus teocote and P. leiophylla have similar 
growth rates as the site index changes. For the mean 
site index (16 m), the rotation of maximum yield in 
height are stable.
     The families of growth curves at the base-age of 
60 years (Figure 1) and the absolute rotation (Table 3 
and Figure 2) demonstrated that the species studied 
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2008; Álvarez-González et al., 2010; Vargas-Larreta 
et al., 2010). La ecuación derivada conservó el núme-
ro de parámetros de la ecuación base y permitió mo-
delar el crecimiento de la altura dominante e índice 
de sitio.
	 En el ajuste global (sin distinción entre especies), 
el modelo (E2) resultó ligeramente superior, lo si-
guieron (E1) y (E3) (Cuadro 1). El modelo (E1) re-
sultó con una estructura autorregresiva de errores de 
tercer orden ligeramente superior en la corrección de 
la autocorrelación de los errores, con valor de 1.83 
del estadístico de Durbin-Watson, corrigiendo con 
ello la autocorrelación.

Cuadro 3. Edad a la cual sucede el turno absoluto por índice de sitio, con edad de referencia de 60 años.
Table 3. Age at which absolute rotation occurs per site index, with base-age of 60 years.

Especie
Turno absoluto al índice de sitio (IS)

8 10 12 14 16 18 20 22 24

Pa 58.0 53.7 50.0 46.5 43.4 40.4 37.7 35.0 32.5
Pd 71.4 63.6 56.7 50.4 44.5 39.1 33.8 28.8 24.0
Pt 59.1 53.7 49.0 44.6 40.6 36.8 33.2 29.8 26.4
Pl 65.5 58.8 53.1 47.8 43.0 38.4 34.1 30.0 26.0
Pay 83.5 76.8 70.9 65.6 60.7 56.1 51.8 47.7 43.8

Pa: Pinus arizonica, Pd: Pinus durangensis, Pt: Pinus teocote, Pl: Pinus leiophylla y Pay: Pinus ayacahuite.
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Figura 3.	 Residuales estandarizados en función de los valores predichos de altura dominante (a) y sesgo promedio por categoría 
de edad (b) del ajuste del modelo completo.

Figure 3.	 Standardized residuals as a function of the predicted values of dominant height (a) and average bias per age category 
(b) of the fit of the full model.

present different growth patterns of dominant height, 
and that their absolute rotations are different for the 
site indices, later occurring, as productivity is lower. 
This characteristic indicates that for the planning of 
forest management activities, forest interventions can 
be focused on a particular species, with ecological 
or timber importance. Therefore, management can 
be focused on the existing species or long-term 
reconversion of forest stands to species with better 
growth patterns and lower absolute rotations, with 
the ecological implications that are derived. Thus, 
the SI of a stand is a function of the most abundant 
species of the site. The patterns of dominant height 
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	 El ajuste de la ecuación dinámica (E4), con el uso 
de variables indicadoras para las cinco especies estu-
diadas, mostró que las tasas mayores de crecimiento 
las presentaron Pinus durangensis, P. ayacahuite y P. 
arizonica, mientras que Pinus teocote y P. leiophylla 
tienen tasas de crecimiento similares conforme cambia 
el índice de sitio. Para el índice de sitio medio (16 m), 
los turnos de máximo rendimiento en altura son es-
tables.
	 Las familias de curvas de crecimiento a la edad 
base de 60 años (Figura 1) y los turnos absolutos 
(Cuadro 3 y Figura 2) demostraron que las especies 
estudiadas presentan diferentes patrones de creci-
miento de la altura dominante y que sus turnos abso-
lutos son distintos para los índices de sitio, ocurrien-
do más tarde, conforme la productividad es menor. 
Esta característica indica que para la planeación de las 
actividades de manejo forestal, las intervenciones sil-
vícolas pueden enfocarse a una especie particular, con 
importancia ecológica o maderable. De esta forma, 
el manejo puede centrarse en las especies existentes 
o en la reconversión a largo plazo de las masas fores-
tales a especies con patrones mejores de crecimiento 
y turnos absolutos menores, con las implicaciones 
ecológicas que se deriven, así, el IS de un rodal está 
en función de la especie más abundante en el sitio. 
Los patrones de crecimiento de la altura dominante, 
en el contexto de silvicultura de masas mezcladas de 
Pinus, sugieren que a mayor índice de sitio, los ciclos 
de corta pueden ser menores, pero exige un cuidado 
adecuado de la densidad y tratamientos complemen-
tarios al bosque.

Conclusiones

	 La ecuación dinámica derivada a partir del mo-
delo base de Chapman-Richards posibilita la mode-
lación del crecimiento de altura dominante e índice 
de sitio. Esta estrategia de modelado es atractiva por-
que mantiene el mismo número de parámetros de la 
ecuación base y es realista en relación a las tendencias 
de los datos usados en el presente estudio. La estruc-
tura matemática obtenida es sencilla y tiene ventajas 
en parsimonia con las ecuaciones contrastadas.
	 El uso de la ecuación dinámica de crecimiento 
de la altura dominante e índice de sitio permitirá la 
clasificación (etiquetado) de la productividad forestal, 
para las unidades de manejo (subrodales), en la planea-
ción de los tratamientos silvícolas y en la determinación 

growth, in the context of forestry of mixed stands 
of Pinus, suggest that the higher the site index, 
the cutting cycles can be shorter, but it requires an 
adequate control of the density and complementary 
treatments to the forest.

Conclusions

The dynamic equation derived from the base 
model of Chapman-Richards allows the modeling 
of dominant height growth and site index. This 
modeling strategy is attractive because it maintains 
the same number of parameters of the base equation 
and is realistic with respect to the tendencies of the 
data used in the present study. The mathematical 
structure obtained is simple and has advantages in 
parsimony with the contrasted equations.

The use of the dynamic equation of dominant 
height growth will allow the classification (labeling) 
of forest productivity, for the management units 
(sub-stands) in the planning of forest treatments and 
in the determination of cutting periods, according to 
the absolute rotation by site quality.

—End of the English version—
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de periodos de corta, de acuerdo a los turnos absolu-
tos por calidad de estación.
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