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RESUMEN

En esta investigación se comparan dos pruebas de bondad de 

ajuste en términos de su error tipo I: ji-cuadrada de Pearson y 

Rao-Scott con corrección de segundo orden, aplicadas a datos 

recolectados mediante técnicas de muestreo que no cumplen los 

supuestos de independencia e igual probabilidad de inclusión 

de las observaciones, llamadas muestras complejas. Ambas 

pruebas se usaron para ajustar categorías diamétricas en una 

plantación de gmelina (Gmelina arborea), aplicando muestreo 

sistemático con parcelas de área fija y parcelas de área va-

riable (Muestreo de Bitterlich o Parcelas de Radio Variable), 

mediante técnicas de simulación. La prueba de Rao-Scott con 

corrección de segundo orden registra un error tipo I más bajo 

y cercano al valor nominal α que la prueba ji-cuadrada de 

Pearson, debido a que toma en cuenta los efectos del diseño 

muestral y corrige la violación de los supuestos. Los resultados 

obtenidos en esta investigación muestran la inconveniencia de 

usar la prueba de bondad de ajuste ji-cuadrada de Pearson 

en datos obtenidos mediante muestreos con parcelas fijas y 

parcelas de área variable, ampliamente usados en el campo 

forestal. Por tanto, es necesario usar pruebas estadísticas que 

consideren la complejidad del diseño muestral, a fin de obtener 

inferencias válidas.

Palabras clave: Gmelina arborea, error tipo I, parcelas de área 

fija, parcelas de área variable.

INTRODUCCIÓN

Muchos de los análisis estadísticos que se 
aplican a los datos de una muestra requie-
ren que las observaciones sean indepen-

dientes y que tengan iguales probabilidades de se-
lección (Skinner et al., 1989). Estos supuestos sólo 
se satisfacen cuando se emplea un muestreo aleatorio 
simple con reemplazo, y se cumplen aproximada-
mente en una muestra aleatoria simple sin reempla-
zo, para una fracción de muestreo pequeña (Sarndal 
et al., 2003).

ABSTRACT

In this research two goodness-of-fit tests are compared in terms 

of their type I error: Pearson’s Chi-square test and Rao-Scott 

test with correction of second order, applied to data collected 

using sampling methods that do not fulfill the assumptions of 

independence and equal probability of inclusion of observations, 

methods called complex surveys. Both tests were utilized to fit 

diametric categories in a gmelina plantation (Gmelina arborea), 

applying systematic sampling with fixed area plots and with 

variable area plots (Bitterlich Sampling or variable radius plot), 

and employing simulation techniques. The Rao-Scott test with 

correction of second order registered a lower Type I error, 

close to the nominal α, when compared to the Pearson Chi-

square test, due to the fact that the former takes into account 

the effects of the sample design and corrects the violation of the 

assumptions. The results obtained in this research show that the 

use of Pearson’s Chi-square goodness-of-fit test is inappropriate 

in data obtained applying fixed area and variable area plots, 

widely used in forestry inventories. Therefore, it is important 

to use statistical tests that take into account sampling design 

complexity, in order to achieve valid inferences.

Key words: Gmelina arborea, type I error, fixed area plots, 

variable area plots.

INTRODUCTION

Many of the statistical analyses, which 
are applied to sample data, require the 
observations to be independent and to have 

equal probabilities of selection (Skinner et al., 1989). 
These assumptions are only satisfied when simple 
random sampling with replacement is employed, and 
they are fulfilled approximately in a simple random 
sample without replacement for a small sampling 
fraction (Sarndal et al., 2003).
 In practice, often the used sample designs do not 
satisfy the assumptions of simple random sampling; 
some observations can have different selection 
probabilities, or for logistic reasons, the individuals of 
a sample form clusters, causing the sample units not to 
be independent. The whole of observations made using 
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 En la práctica, muchas veces los diseños muestra-
les usados no satisfacen los supuestos del muestreo  
aleatorio simple; algunas observaciones pueden tener 
diferentes probabilidades de selección o, por razones 
logísticas, los individuos de una muestra forman con-
glomerados, causando que las unidades muestrales 
no sean independientes. Al conjunto de observacio-
nes realizadas usando una técnica de muestreo con 
estas características, se le denomina muestra compleja 
(Carlson, 1998).
 Usualmente los análisis estadísticos de una mues-
tra compleja se hacen como si las observaciones 
cumplieran con los supuestos del muestreo aleatorio 
simple (Lee et al., 1989). Es bastante común em-
plear paquetes estadísticos estándar y no considerar 
la complejidad del diseño muestral. Pero, ¿se puede 
ignorar la violación de los supuestos de independen-
cia e igual probabilidad de selección de las observa-
ciones sin afectar la validez de los métodos estadísti-
cos usados?  
 La prueba ji-cuadrada de Pearson es una de las 
más usadas para estudiar la bondad de ajuste, por lo 
que es importante determinar si la violación de los 
supuestos que ocurre en el muestreo con parcelas de 
área fija y de área variable, diseños muestrales com-
plejos usados en el campo forestal, afecta su validez 
estadística. Se ha analizado el comportamiento de la 
prueba cuando se usa muestreo estratificado y mues-
treo por conglomerados (Holt et al., 1980; Rao y 
Scott, 1981; Thomas y Rao, 1987); sin embargo, no 
se ha estudiado su comportamiento cuando se aplica 
a datos obtenidos mediante técnicas de muestreo fo-
restal.
 Se han propuesto métodos alternativos para probar 
bondad de ajuste considerando la complejidad del di-
seño muestral: Fay (1985), Rao y Scott (1979, 1981, 
1984), Rai et al. (2001). Una prueba de bondad de 
ajuste con estas características es la de Rao-Scott con 
corrección de segundo orden; usa un estadístico de 
prueba que corrige la violación de los supuestos del 
muestreo aleatorio simple e incorpora el efecto del 
diseño muestral.
 En este trabajo se estudia el comportamiento de 
las pruebas de bondad de ajuste ji-cuadrada de Pear-
son y Rao-Scott con corrección de segundo orden en 
términos del error tipo I, para ajustar categorías dia-
métricas de gmelina (Gmelina arborea) en muestreos 
con parcelas fijas y parcelas variables. Se intenta 
demostrar, mediante un ejemplo que utiliza datos 
reales de una plantación, que una prueba estadística 
de bondad de ajuste que considere información so-
bre el diseño muestral permite realizar inferencias 
más confiables que la prueba clásica ji-cuadrada de 
Pearson.

the technique of sampling with these characteristics is 
called complex survey (Carlson, 1998).
     Usually, statistical analyses of a complex sample 
are conducted as if the observations were fulfilling 
the assumptions of simple random sampling (Lee et 
al., 1989). It is rather common to employ standard 
statistical packages and not to take into account the 
complexity of the sample design. But can the violation 
of assumptions of independence and probability of equal 
observation selection be ignored without affecting the 
validity of the utilized statistical methods?
 Pearson’s Chi-square test is one of the most used 
for studying goodness-of-fit; therefore, it is important 
to determine if the violation of assumptions occurring 
in the sampling with fixed area and variable area 
plots, complex sampling designs used in forest field, 
will affect its statistical validity. It has been analyzed 
the performance of the test when stratified sampling 
and cluster sampling are used (Holt et al., 1980; Rao 
and Scott, 1981; Thomas and Rao, 1987); however, 
its behavior has not been studied when it is applied to 
data obtained through forest sampling techniques.
 Alternative methods have been proposed for testing 
goodness-of-fit considering the complexity of sample 
design: Fay (1985), Rao and Scott (1979, 1981, 1984), 
Rai et al. (2001). One goodness-of-fit test with these 
characteristics is that of Rao-Scott with correction of 
second order; it utilizes a test statistic that corrects 
the violation of the assumptions of simple random 
sampling and incorporates the effect of the sample 
design.
 In this paper, the performance of Pearson’s Chi-
square goodness-of-fit test and the Rao-Scott test 
with correction of second order is studied in terms of  
type I error, in order to fit diametric categories of 
gmelina (Gmelina arborea) in samplings with fixed 
and variable plots. It is attempted to prove by an 
example, based on real data from a plantation, that 
a statistical goodness-of-fit test, taking into account 
information on sampling design, allows carrying out 
more reliable inferences than Pearson’s classical Chi-
square test.

MATERIALS AND METHODS

Sampling with fixed area plots

 This sampling method is based on the establishment of plots 

with fixed dimensions and form (rectangular, circular, and square). 

A tree or any other individual or object one wants to study is 

included in the sample if it is within the limits of the established 

plots (Schreuder et al., 1993).

 In sampling with fixed area plots, the probability of a tree u be 

included in the sample (pu) is given by: 
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MATERIALES Y MÉTODOS

Muestreo con parcelas de área fija

 Este método de muestreo se basa en el establecimiento de parce-

las con dimensiones y forma fija (rectangular, circular, o cuadrada). 

Un árbol o cualquier otro individuo u objeto que se desea estudiar 

es incluido en la muestra si se encuentra dentro de los límites de las 

parcelas establecidas (Schreuder et al., 1993). 

 En el muestreo con parcelas de área fija, la probabilidad de que 

un árbol u sea incluido en la muestra (pu) está dada por:

  

 pu=au /A  (1) 

donde, au es el área definida por el conjunto de puntos donde se 

puede localizar una parcela, tal que el árbol u sea incluido en la 

muestra; esta área se denomina área de inclusión. A representa el 

área del bosque, plantación o sitio a muestrear.

 Para parcelas muestrales de forma circular es fácil verificar 

que el área de inclusión de un árbol es un círculo concéntrico a 

él, con el mismo radio de la parcela muestral (Schreuder et al., 

1993). De esta forma au=a y es constante para todos los árboles, 

por ende todos los individuos tienen igual probabilidad de ser 

incluidos en la muestra, cumpliéndose uno de los supuestos del 

muestreo aleatorio simple.

 Sin embargo, en el muestreo con parcelas de área fija no se 

cumple el supuesto de independencia de las observaciones, ya que 

una vez elegido el punto donde se aplica el muestreo, los árboles 

de cada parcela forman conglomerados y existe una correlación 

espacial entre ellos.

Muestreo con parcelas de área variable

 El muestreo con parcelas de área variable, también llamado 

muestreo con parcelas de radio variable o método de Bitterlich, es 

una técnica que permite seleccionar árboles de una parcela con una 

probabilidad proporcional al área de la sección transversal o área 

basal o, lo que es igual, proporcional al cuadrado del diámetro del 

árbol (De Vries, 1986). 

 Si A representa el área del sitio del cual se extraerá la muestra 

y α es el ángulo de barrido utilizado en el muestreo, la probabilidad 

(pu) de que un árbol u de diámetro du sea muestreado desde un 

punto localizado aleatoriamente es: 

  p
d

A
u

u=
×

× × ( )
π

α

2

24 2seno /
       (2)

 Para una demostración matemática de esta ecuación y obtener 

detalles de esta técnica de muestreo consultar De Vries (1986) y 

Schreuder et al. (1993).

 De acuerdo con la ecuación 2, la probabilidad de seleccionar 

un árbol  es proporcional al cuadrado de su diámetro. De esta 

manera, en el muestreo con parcelas de área variable no se satis-

face el supuesto de igual probabilidad de selección para todas las 

 pu=au /A  (1) 

where, au is the area defined by the set of points, where a plot can 

be located, so that the tree u may be included in the sample; this 

area is called inclusion area. A represents the forest area, plantation, 

or sampling site.

 For sample plots of circular form, it is easy to verify that the 

inclusion area of a tree is a concentric circle around it, with the 

same radius as the sample plot (Schreuder et al., 1993). This way 

au=a and it is constant for all the trees, hence all the individuals 

have equal probability of being included in the sample, one of the 

assumptions of simple random sampling being fulfilled.

 However, in sampling of fixed area plots the assumption of 

observation independence is not fulfilled, since once the point for 

the sampling application is chosen, the trees of each plot form 

clusters and there is spatial correlation among them.

Sampling with variable area plots

 Sampling with variable area plots, also called  sampling with 

plots of variable radius or Bitterlich method, is a technique which 

allows selecting trees from a plot with probability proportional to 

the basal area of the tree, or which is the same, proportional to the 

square diameter of the tree (DeVries, 1986).

 If A represents the area of the site from which the sample will 

be extracted and α is the angle gauge used in the sampling, the 

probability (pu) that a tree u of diameter du may be sampled from a 

randomly located point is:

  p
d

A
u

u=
×

× × ( )
π

α

2

24 2sine /
       (2)

 For a mathematical demonstration of this equation and in order 

to obtain details of this sampling technique, DeVries (1986) and 

Schreuder et al. (1993) should be consulted.

 According to equation 2, the probability of selecting a tree is 

proportional to its square diameter. This way, in sampling with 

variable area plots, the assumption of equal selection probability is 

not satisfied for all sample units, since the trees with larger diameter 

have higher probability of being selected. The distance from the tree 

to the sampling point influences (the selection) as well. 

 This sampling technique does not satisfy the assumption 

of observation independence either, since the trees selected at a 

sampling point form clusters.

Pearson’s Chi-square goodness-of-fit test 

and Rao-Scott test of second order

 In order to apply Pearson’s Chi-square goodness-of-fit test, 

the observations were classified in k categories or classes, and it 

is assumed that they are independent and distributed identically. 

The null hypothesis is Ho: pi = pio for i = 1, 2,…,k; where pi 

is the proportion of individuals belonging to category i, pio is 

the theoretical proportion of category i, and k  is the number of 

categories.
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unidades muestrales, ya que los árboles con mayor diámetro tienen 

una probabilidad más alta de ser seleccionados. También influye la 

distancia del árbol al punto de muestreo.

 Esta técnica de muestreo tampoco satisface el supuesto de inde-

pendencia de las observaciones, ya que los árboles seleccionados en 

un punto muestral forman conglomerados.

Pruebas de bondad de ajuste ji-cuadrada de 

Pearson y Rao-Scott de segundo orden

 Para aplicar la prueba de bondad de ajuste ji-cuadrada de 

Pearson las observaciones son clasificadas en k categorías o cla-

ses, y se supone que son independientes e idénticamente distribui-

das. La hipótesis nula es Ho: pi = pio para i = 1, 2,...,k; donde 

pi es la proporción de individuos que pertenecen a la categoría i, 

pio es la proporción teórica de la categoría i, y k es el número de 

categorías.

 El estadístico de prueba es:

  X n
p p

pp
i io

ioi

k
2

2

1
=

−( )
=
∑

l
  (3)

donde pi
l  se obtiene dividiendo el número de individuos de la cate-

goría i observados entre el total de individuos p n ni i
l =( )/ .

 Si las observaciones son independientes y cada individuo tiene 

la misma probabilidad de ser seleccionado en la muestra, el esta-

dístico χ p
2  sigue asintóticamente una distribución ji-cuadrada con  

k−1 grados de libertad.

 Cuando se utiliza un diseño muestral complejo, el estadístico 

χ p
2  no se distribuye χ k−( )1

2 ,  pero tiene una distribución simétrica, 

y un múltiplo de χ p
2  podría seguir aproximadamente una distribu-

ción χ2 (Lohr, 2000). 

 Rao y Scott (1981) determinaron que el estadístico χ p
2  

se distribuye asintóticamente como una suma ponderada 

δ δ δ1 1 2 2 1 1W W Wk k+ + + − −......  de variables aleatorias ji-

cuadradas Wj, cada una con un grado de libertad. Los pesos 

δj son los valores propios de la matriz de los efectos del dise-

ño generalizados; esta matriz se define como D P V= −
o ,1  donde  

P p p p po o o o o = ( ) − ′diag ,  es el vector de proporciones teóricas y  

V/n es la matriz de covarianzas del vector de proporciones estima-

das p� . Si se utiliza un muestro aleatorio simple, los valores propios 

δj de la matriz de los efectos del diseño generalizados son iguales 

a uno. Así, la suma ponderada δ j j
j

k

W
=

−

∑
1

1

 se reduce a una suma de 

k−1 variables aleatorias ji-cuadradas independientes con un grado 

de libertad, cuya distribución es χ k−( )1
2 . Si el diseño muestral es 

más complejo, los efectos del diseño generalizados δj no son igua-

les a 1; por tanto, la distribución asintótica de la variable aleatoria 

δ j j
j

k

W
=

−

∑
1

1

 no es χ k−( )1
2  (Lehtonen y Pahkinen, 2004).

 Basados en este hecho, Rao y Scott (1981) proponen dos co-

rrecciones al estadístico ji-cuadrado de Pearson. La corrección 

de primer orden ajusta  la esperanza, y la de segundo orden la 

     The test statistic is:                         

  X n
p p

pp
i io

ioi

k
2

2

1
=

−( )
=
∑

l
  (3)

where, pi
l  is obtained by dividing the number of individuals of 

category i observed by the total of individuals p n ni i
l =( )/ .

 If the observations are independent and each individual has the 

same probability of being selected in the sample, the χ p
2  statistic 

follows asymptotically a Chi-square distribution with k - 1 degree 

of freedom.

     When a complex sample design is used, the χ p
2  statistic is 

not distributed  χ k−( )1
2 ,  but it has a symmetric distribution, and 

a multiple of χ p
2  could approximately follow an χ2 distribution 

(Lohr, 2000).

 Rao and Scott (1981) determined that the χ p
2  

statistic is distributed asymptotically as an adjusted sum 

δ δ δ1 1 2 2 1 1W W Wk k+ + + − −......  of Chi-square random variables 

Wj, each with one degree of freedom. The δj weights are the 

eigenvalues of the matrix of the generalized design effects; this 

matrix is defined as D P V= −
o ,1 where P p p p po o o o o = ( ) − ′diag ,

is the vector of theoretical proportions and V/n is the matrix 

of co-variances of the vector of estimated proportions p� . If 

simple random sampling is utilized, the eigenvalues of δj of the 

matrix of generalized design effects are equal to one. Thus, the 

weighted sum δ j j
j

k

W
=

−

∑
1

1

is reduced to a sum of k−1 chi-squared 

independent randomized variables with one degree of freedom 

whose distribution is χ k−( )1
2 . If the sample design is more 

complex, the generalized effects of design δj are not equal to 

1: therefore, the asymptotic distribution of the random variable

δ j j
j

k

W
=

−

∑
1

1

 is not χ k−( )1
2  (Lehtonen and Pahkinen, 2004).

 Based on this fact, Rao and Scott (1981) propose two 

corrections for Pearson’s Chi-square statistic. The correction of 

first order fits expectation, and that of second order fits expectation 

and asymptotic variance. In this study, the correction of second 

order is employed, also called Sattlerthwaite correction. The Rao-

Scott test with correction of second order uses the statistic:

 χ

χ

δ
RS

p

a
2

2

2

2
1

=
+

�
�  (4)

where, χ p
2  is Pearson’s Chi-square statistic; δ�  is an estimator 

of  the mean δ  of eigenvalues δj of the matrix of generalized 

design effects; â is an estimator of the coefficient of δj eigenvalue 

variation.

     If the sample design has unequal inclusion probabilities, the 

χ p
2  statistic is calculated utilizing estimators of pi

l  proportions 

weighted by inclusion probabilities:
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esperanza y la varianza asintótica. En este estudio se emplea la 

corrección de segundo orden, también llamada corrección de Sa-

tterthwaite. La prueba de Rao-Scott con corrección de segundo 

orden usa el estadístico: 

 χ

χ

δ
RS

p

a
2

2

2

2
1

=
+

�
�  (4)

donde, χ p
2  es el estadístico ji-cuadrado de Pearson; δ�  es un esti-

mador de la media δ  de los valores propios δj de la matriz de los 

efectos del diseño generalizados; â es un estimador del coeficiente 

de variación de los valores propios δj.

 Si el diseño muestral tiene probabilidades de inclusión desigua-

les, se calcula el estadístico χ p
2  utilizando estimadores de propor-

ciones pi
l  ponderados por las probabilidades de inclusión:

 p

W Y

W
i

j ij
j

n

j
j

n
l =

=

=

∑

∑

1

1

     con  Wj = 1 / Πj  (5)

donde, Πj es la probabilidad de que el individuo j sea seleccionado 

en la muestra (probabilidad de inclusión del individuo j), y Yij es 

una variable indicadora con valor 1 si el individuo j pertenece a la 

categoría i y 0 en otro caso.

 Las ecuaciones para calcular δ  y â2 son: 

 δ�
� l

=
−( )

( )
=
∑n

k

v p

p
i

oii

k

1 1
  (6)

siendo v pi
� l( )  la varianza del estimador de la proporción de la 

categoría i, 

 a

k

j
j

k

�
�

�

2
2

1

1

2
1

1=

−( )

−=

−

∑ δ

δ

  (7) 

δ� j
j

k 2

1

1

=

−

∑  se calcula de la siguiente manera:

 δ�
l l l

i
j

j

k
i j

oi ojj

k

i

k

n
V p p

p p

2

1

1
2

2

11=

−

==
∑ ∑∑=

( ),
  (8)

donde, V p pi j
l l l2

,( )  es el elemento i, j de la matriz de covarian-

za de los estimadores de proporciones; poi y poj corresponden a 

las proporciones teóricas para las categorías i y j. Los valores de   

V p pi j
l l l2

,( )  se pueden estimar utilizando una técnica de re-muestreo 

como la técnica de replicación balanceada, bootstrap o Jackknife.  

En esta investigación se utilizó la técnica de Jackknife.

 p

W Y

W
i

j ij
j

n

j
j

n
l =

=

=

∑

∑

1

1

     with  Wj = 1 / Πj  (5)

where, Πj is the probability that individual j may be selected in the 

sample (inclusion probability of individual j), and Yij is an indicator 

variable  with value 1, if individual j belongs to category i and 0 

in another case.

     The equations to calculate δ  and â2 are:

 δ�
� l

=
−( )

( )
=
∑n

k

v p

p
i

oii

k

1 1
  (6)

v pi
� l( )  being the variance of the proportion estimator of category i,

 a

k

j
j

k

�
�

�

2
2

1

1

2
1

1=

−( )

−=

−

∑ δ

δ

  (7) 

δ� j
j

k 2

1

1

=

−

∑  is calculated as follows:

 δ�
l l l

i
j

j

k
i j

oi ojj

k

i

k

n
V p p

p p

2

1

1
2

2

11=

−

==
∑ ∑∑=

( ),
  (8)

where, V p pi j
l l l2

,( )  is the element i, j of the covariance matrix of 

the proportion estimators; poi and poj correspond to the theoretical 

proportions for categories i and j. The values V p pi j
l l l2

,( )  can 

be estimated using a re-sampling technique like the technique of 

balanced replication, bootstrap, or Jackknife. In this research the 

Jackknife technique was used.

     χRS2
2

 statistic is distributed approximately as chi-square with 
K

a

−

+

1

1
2�

 degrees of freedom. In most of the cases the degrees of 

freedom are a decimal number; therefore, they are rounded off to 

the next inferior integer. The theoretical foundations of this test 

may be found in Rao and Scott (1979, 1981, 1984), Sarndal et al. 

(2003), and Lehtonen and Pahkinen (2004).

Data collection

 In this paper, data of a gmelina plantation located in the farm El 

Hierro, State of Portuguesa, property of the company SMURFIT, 

Cartón de Venezuela, were used. In the plantation, census was taken 

of a 4.8 ha area with 4841 trees. Each tree was located in coordinate 

axes (x,y), and its diameter at breast height (DBH=DAP) was 

measured. Three categorical diameter variables were established, 

utilizing 5, 10, and 15 categories, used in the goodness-of-fit tests. 

Thus, for example, in order to establish a variable with 5 diametric 



292

AGROCIENCIA, 1 de abril - 15 de mayo, 2008

VOLUMEN 42, NÚMERO 3

 El estadístico χRS2
2

 se distribuye aproximadamente como una 

ji-cuadrada con 
K

a

−

+

1

1
2�

 grados de libertad. En la mayoría de los 

casos los grados de libertad son un número decimal, por lo que se 

redondean al entero inferior más próximo. Los fundamentos teóri-

cos de esta prueba pueden verse en Rao y Scott (1979, 1981, 1984), 

Sarndal et al. (2003) y Lehtonen y Pahkinen (2004). 

Recolección de datos

 En este trabajo se utilizaron datos de una plantación de gmelina 

ubicada en la finca El Hierro, Estado Portuguesa, propiedad de la 

empresa SMURFIT Cartón de Venezuela. En la plantación se hizo 

un censo de un área de 4.8 ha, con 4841 árboles. Cada árbol se 

ubicó en un eje cartesiano (x,y), y se midió el diámetro a la altura 

de pecho (DAP). Se establecieron tres variables categóricas del 

diámetro usando 5, 10 y 15 categorías, usadas en las pruebas de 

bondad de ajuste. Así, por ejemplo, para establecer una variable 

con 5 categorías diamétricas se dividió el rango de valores de DAP 

en 5 intervalos, y a cada árbol se le asignó un número del 1 al 5 de-

pendiendo del intervalo donde se ubica su DAP. De manera similar 

se procedió en el caso de 10 y 15 categorías.

Obtención de muestras y aplicación de las pruebas 

de bondad de ajuste mediante simulación

 Se construyeron dos programas de computación que permiten 

simular la obtención de muestras usando parcelas de área fija y 

parcelas de área variable. Con los datos de una muestra, estos pro-

gramas aplican a la variable categoría diamétrica las pruebas de 

bondad de ajuste ji-cuadrada de Pearson y Rao-Scott con corrección 

de segundo orden. Para implementar los programas se utilizó el 

lenguaje GAUSS, versión 3.1.4.

 Los programas de simulación requieren como entrada una 

base de datos con la información de la población de árboles de 

donde se extraerá la muestra, la cual debe incluir la ubicación de 

cada árbol expresada como coordenadas cartesianas (x,y), el DAP 

y la categoría diamétrica. También es necesario indicar las dimen-

siones del área a muestrear, el número de puntos de muestreo, el 

radio de las parcelas muestrales (para el muestreo con parcelas de 

área fija) y el ángulo de barrido (para el muestreo con parcelas de 

área variable).

 Para simular el muestreo con parcelas de área fija se trabajó 

con parcelas circulares de radio igual a 10 m, y los puntos iniciales 

de muestreo se seleccionaron con un diseño sistemático. Se hicieron 

pruebas con 5 y 8 puntos, correspondientes a una intensidad de 

muestreo de 3 y 5%. En la simulación del muestreo de parcelas de 

área variable se tomaron los mismos puntos iniciales utilizados en 

la simulación del muestreo con parcelas de área fija, para posterior-

mente realizar comparaciones entre los dos tipos de muestreo. 

 Los programas aplican el método Mirage para corregir el lla-

mado efecto de borde en los límites del área a muestrear, y el sesgo 

que producen. El efecto de borde supone que un árbol ubicado 

cerca de los límites de la parcela puede tener una probabilidad de 

categories, the range of DAP values was divided into 5 intervals, 

and to each tree, a number from 1 to 5 was assigned depending on 

the interval where its DAP is situated. A similar procedure was 

followed in the case of 10 and 15 categories.  

Samples obtention and application 

of goodness-of-fit tests by simulation

 Two computer programs were constructed which allow 

simulating to obtain samples using fixed area and variable area plots. 

With the data of a sample these programs apply to the diametric 

category variable the chi-square goodness-of-fit tests of Pearson 

and Rao Scott with correction of second order. GAUSS language, 

version 3.1.4, was used to implement the programs.

 As an entrance, the simulation programs require a data base 

with information about the tree population of the area where the 

sample will be extracted, which must include the location of each 

tree expressed as coordinate (x,y), DAP, and diametric category. It 

is also necessary to indicate the dimensions of the area from which 

samples are to be taken, the number of sampling points, the radius 

of sample plots (for sampling with fixed area plots), and the angle 

gauge (for sampling with variable area plots).

 To simulate sampling with fixed area plots, circular plots with 

radius of 10 m were employed, and initial sampling points were 

selected with systematic design. Tests were made with 5 and 8 points 

corresponding to a sampling intensity of 3 and 5 %. At the simulation 

of sampling with variable area plots, the same initial points used 

for sampling simulation with fixed area plots were taken in order 

to subsequently carry out comparisons between the two sampling 

types.

 The programs apply the Mirage method to correct the so-called 

border effect in the limits of the sampling area, and the skewness 

they produce. The border effect assumes that a tree situated near 

the limits of the plot may have a probability of being included in the 

sample different from a similar tree, located in the center of the plot 

(Schreuder et al., 1993).

Measuring of the performance of goodness-of-fit tests

 In order to evaluate the performance of the two considered 

goodness-of-fit tests, the Type I error is estimated which, if 

differs significantly from the established theoretical level, it is 

considered that the test is not robust and therefore, the validity of 

the obtained results cannot be guaranteed. One, of the most used 

criteria of robustness is that of Bradley (1978), which establishes 

that a test is robust when the empirical rates of type I error are 

in the interval [0.5α, 1.5α]; thus, for α = 0.05 this criterion of 

robustness requires that the estimated type I error must be between 

0.025 and 0.075, otherwise, the test cannot be considered robust. 

Estimate of type I error

 The type I error was estimated by simulation techniques or the 

Monte Carlo method. For this, the program was executed r times, 
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ser incluido en la muestra diferente a la de un árbol similar situado 

en el centro de la parcela (Schreuder et al., 1993).

Medición del desempeño de la pruebas de bondad de ajuste

 Para medir el desempeño de las dos pruebas de bondad de 

ajuste consideradas, se estima el error tipo I el cual, si difiere sig-

nificativamente del nivel nominal (teórico) establecido, se considera 

que la prueba no es robusta y, por tanto, no puede garantizarse la 

validez de los resultados obtenidos. Uno de los criterios de robus-

tez más usados es el de Bradley (1978), el cual establece que una 

prueba es robusta si las tasas empíricas de error tipo I están en el 

intervalo [0.5α, 1.5α]; así, para α=0.05 este criterio de robustez 

requiere que el error tipo I estimado esté entre 0.025 y 0.075, en 

otro caso, la prueba no puede considerarse robusta.  

Estimación del error tipo I

 El error tipo I se estimó mediante técnicas de simulación o 

método Monte Carlo. Para ello, el programa se ejecutó r veces, 

lo que implica que se obtienen r muestras y que a cada una de 

ellas se le aplican las pruebas para determinar si las proporciones 

de cada categoría diamétrica en la muestra (pi) son iguales a las 

proporciones de cada categoría diamétrica en la población (pio), 

entendiéndose por tal el conjunto de todos los árboles en la plan-

tación. 

 Al finalizar las r corridas, el programa estima el error tipo I de 

las dos pruebas estadísticas, con la ecuación: 

 αl =
X
r   (9)

donde, αl  es el error tipo I estimado; X el número de veces que se 

rechazó Ho siendo verdadera; r es el número de replicaciones.  En 

todas las simulaciones se utilizaron 5000 replicaciones.

 Una vez calculado el valor de αl  para las pruebas de bondad de 

ajuste, se compara con el nominal establecido (0.05).

Comparación de las pruebas de bondad de ajuste

 Se usó la Prueba de Mc Nemar (Conover, 1980) para comparar 

el error tipo I de las pruebas y establecer si hay diferencias signifi-

cativas entre ambas.

RESULTADOS Y DISCUSIÓN

 Los valores del error tipo I estimado ( αl ) de las 
pruebas aplicadas en categorías diamétricas de gme-
lina, se muestran en los Cuadros 1 y 2. Se presentan 
los resultados obtenidos para los dos tipos de mues-
treo utilizados y diferentes condiciones experimenta-
les, así como los valores del estadístico de Mc Ne-
mar obtenidos al comparar las dos pruebas de bondad 
de ajuste.

which implies that r samples are obtained and that to each of them, 

tests are applied to determine if the proportions of each diametric 

category in the sample (pi) are equal to those of each diametric 

category in the population (pio), understanding by this, all the trees 

in the plantation.

 Finishing the r runs, the program estimates the type I error of 

the two statistical tests with the equation:

 αl =
X
r   (9)

where, αl  is the estimated type I error; X the number of times Ho 

was rejected being true; r is the number of replications. In all the 

simulations 5000 replications were used.

 Once the value of αl  for goodness-of-fit tests calculated, it is 

compared with the established nominal alpha (0.05).

Comparison of goodness-of-fit tests

 The McNemar Test (Conover, 1980) was used to compare type 

I error of the tests and to establish if there are significant differences 

between both.

RESULTS AND DISCUSSION

 The values of type I error estimated ( αl ) of the 
tests applied in diametric categories of gmelina are 
shown in Tables 1 and 2. The results obtained for the 
two sampling types utilized and different experimental 
conditions are shown, as well as the statistical values 
of McNemar, obtained at comparing the two goodness-
of-fit tests.
     In all the simulated situations Pearson’s Chi-square 
test has a higher type I error than that of Rao-Scott 
with correction of second order. The values of Mc 
Nemar’s statistic are lower than −2.33, indicating 
highly significant differences between the results of 
Pearson’s Chi-square goodness-of-fit test and those of 
Rao-Scott’s test with correction of second order.
 In Table 1 it is shown that when fixed area plots 
are used, the Chi-square test of Pearson registers 
values of αl  fluctuating between 0.0836 and 0.1470, 
moving away from the nominal value (α=0.05). In 
sampling with variable area plots (Table 2), Pearson’s 
chi-square test presents very high values of αl  (0.7750 
to 0.9920), a type I error unacceptable for a test of 
hypothesis. These values, so high for an estimated type 
I error, are basically due to the proper characteristics 
of sampling with variable area plots, since this method 
favors the selection of trees with larger diameters at 
breast height, to estimate the total base area and the 
total volume being among its objectives; and the trees 
with the highest diametric categories are the ones that 
render the greatest contribution to the estimate of 
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 En todas las situaciones simuladas la prueba ji-
cuadrada de Pearson tiene un error tipo I más alto que 
la de Rao-Scott con corrección de segundo orden. Los 
valores del estadístico de McNemar son menores a 
−2.33, indicando diferencias altamente significativas 
entre los resultados de la prueba de bondad de ajuste 
ji-cuadrada de Pearson y los de la prueba de Rao-Scott 
con corrección de segundo orden. 
 En el Cuadro 1 se muestra que cuando se usan 
parcelas de área fija la prueba ji-cuadrada de Pear-
son registra valores de αl  que oscilan entre 0.0836 y 
0.1470, alejándose del valor nominal (α=0.05). En el 
muestreo con parcelas de área variable (Cuadro 2), la 
prueba ji-cuadrada de Pearson presenta valores muy 
altos de αl  (0.7750 a 0.9920), un error tipo I inacep-
table para una prueba de hipótesis. Estos valores tan 
altos para el error tipo I estimado se deben fundamen-
talmente a las características propias del muestreo con 
parcelas de área variable, ya que este método favorece 
la selección de árboles con diámetros mayores a la 
altura de pecho, y uno de sus objetivos es estimar el 
área basal total y el volumen total, donde los árbo-
les de las categorías diamétricas superiores hacen el 
mayor aporte para estimar estos parámetros. Así, al 
analizar los resultados de las simulaciones se observó 

these parameters. Thus, analyzing the results of the 
simulations, it was observed that the lower diametric 
categories were not represented in the samples, or the 
number of trees included by these categories was small, 
causing that the proportions of the diametric categories 
in a sample (pi) were very different from the proportions 
registered in population (pio). Therefore, in most cases 
the rejection of a true null hypothesis is produced, and  
type I error was very high. The difference to sampling 
of fixed area plots basically lies here, where all the 
trees located within the plot perimeter are included, so 
that the trees of a certain diametric class are sampled 
proportionally to the frequency in the forest of this 
particular class of trees.
 Pearson’s Chi-square test has a distortion of the 
estimated type I error with respect to the nominal 
value (α=0.05) much higher in the sampling with 
variable area plots than in that of fixed area plots. 
Besides, in the sampling with fixed area plots, only 
the assumptions of independence of observations is 
violated, whereas in that of variable area plots, the 
assumption of independence and equal distribution of 
observations are violated.
 In Tables 1 and 2 the Chi-square tests of Pearson 
and Rao-Scott with correction of second order show 

Cuadro 1. Error tipo I estimado para las pruebas de bondad de ajuste para α=0.05 aplicadas a categorías diamétricas de gmelina, 
usando parcelas de área fija.

Table 1. Estimated type I error for goodness-of-fit tests for α=0.05 applied to diametric categories of gmelina, using fixed area plots.

 Número de categorías Número de puntos  Error tipo I estimado ( αl )  Estadístico de
       
 diamétricas (k) de muestreo (n) χ2 Pearson  Rao-Scott 2º orden Mc Nemar

 5 5 0.0910 0.0760 −4.7†

 5 8 0.0836 0.0642 −5.5†

 10 5 0.0940 0.0716 −5.9†

 10 8 0.0854 0.0606 −6.5†

 15 5 0.1470 0.0834 −5.6†

 15 8 0.1092 0.0712 −15.0†

† Diferencias altamente significativas (p≤0.01)

Cuadro 2. Error tipo I estimado para las pruebas de bondad de ajuste aplicadas a categorías diamétricas de gmelina con α=0.05, 
usando parcelas de área variable.

Table 2. Estimated type I error for goodness-of-fit tests applied to diametric categories of gmelina with α=0.05, using variable area 
plots.    

 Número de categorías Número de puntos  Error tipo I estimado ( αl )  Estadístico de
       
 diamétricas (k) de muestreo (n) χ2 Pearson  Rao-Scott 2º orden Mc Nemar

 5 5 0.9920 0.0896 −67.1†

 5 8 0.9302 0.0746 −65.3†

 10 5 0.9720 0.0708 −67.1†

 10 8 0.8650 0.0552 −63.7†

 15 5 0.9528 0.0610 −66.7†

 15 8 0.7750 0.0576 −59.8†

† Diferencias altamente significativas (p≤0.01).
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que las categorías diamétricas inferiores no estaban 
representadas en las muestras, o el número de árboles 
incluidos de esas categorías era pequeño, ocasionando 
que las proporciones de las categorías diamétricas en 
una muestra (pi) fueran muy diferentes de las propor-
ciones registradas en la población (pio). Por tanto, en 
la mayoría de los casos se rechazó una hipótesis nula 
verdadera y el error tipo I estimado fue muy alto. En 
ésto radica básicamente la diferencia con el muestreo 
de parcelas de área fija, donde se incluyen todos los 
árboles ubicados dentro del perímetro de la parcela, 
de modo que los árboles de cierta clase diamétrica se 
muestrean en forma proporcional a la frecuencia en el 
bosque de esa clase particular de árboles.
 La prueba ji-cuadrada de Pearson presenta una dis-
torsión del error tipo I estimado con respecto al valor 
nominal (α=0.05) mucho mayor en el muestreo con 
parcelas de área variable que en el de parcelas de área 
fija. Además, en el muestreo con parcelas de área 
fija se viola sólo el supuesto de independencia de las 
observaciones, mientras que en el de parcelas de área 
variable se violan los supuestos de independencia e 
igual distribución de las observaciones.
 En los Cuadros 1 y 2 las pruebas ji-cuadrada de 
Pearson y Rao-Scott con corrección de segundo or-
den muestran variaciones en su desempeño en rela-
ción con el tamaño de muestra. En ambas pruebas el 
error tipo I estimado disminuye cuando aumenta la 
cantidad de puntos muestrales, para un número fijo 
de categorías diamétricas. Éste es el comportamiento 
esperado, puesto que en muestras de tamaño mayor 
las categorías diamétricas están mejor representadas, 
por lo que se rechaza en menor proporción la hipóte-
sis nula.
 Si se mantiene constante el número de puntos 
muestrales, se observa que en el muestreo con parce-
las de área fija (Cuadro 1) el valor de αl  crece cuando 
aumenta el número de categorías diamétricas. En el 
muestreo con parcelas de tamaño variable (Cuadro 2), 
el error tipo I estimado es menor para un número ma-
yor de categorías.
 La prueba de Rao-Scott con corrección de segun-
do orden, en parcelas fijas y en parcelas variables, 
presenta valores del error tipo I estimado menores 
y más cercanos a 0.05 que la prueba ji-cuadrada de 
Pearson. Los resultados de la prueba de Rao-Scott 
con las correcciones, basadas en la esperanza y la va-
rianza asintótica además de la inclusión de los efectos 
del diseño muestral, disminuyen considerablemente 
el error tipo I.
 Rao y Scott (1981) también encontraron diferen-
cias importantes entre las dos pruebas de bondad de 
ajuste al estudiar el efecto de la estratificación y de 
los conglomerados sobre la distribución asintótica del 

variations in their performance related to sample size. 
In both tests, the estimated type I error diminishes 
when the amount of sample points increases for a 
fixed number of diametric categories. This is the 
expected behavior, given that in samples of larger size 
the diametric categories are better represented, which 
causes that the null hypothesis is rejected to a lesser 
proportion.
 If the number of sampling points is kept constant, 
it is observed that in sampling with fixed area plots 
(Table 1), value αl  grows when the number of diametric 
categories increases. In sampling with variable size 
plots (Table 2) the estimated type I error is lower for 
a larger number of categories.
 Rao-Scott’s test with correction of second order, 
in fixed area as well as in variable area plots, presents 
lower values of the estimated type I error, and closer 
to 0.05 than Pearson’s chi-square test. The results 
of the Rao-Scott test with the corrections, based on 
expectation and asymptotic variance, as well as the 
inclusion of the sample design effect, diminish the 
type I error considerably.
 Rao and Scott (1981) also found important 
differences between the two goodness-of-fit tests, 
when studying the effect of stratification and clusters 
on asymptotic distribution of Pearson’s Chi-square 
statistic. Likewise, Thomas and Rao (1987) reported 
high significance levels for Pearson’s Chi-square test 
with sampling by clusters, and rather good results for the 
Rao-Scott test. Nevertheless, in none of these studies, 
Pearson’s Chi-square goodness-of-fit test showed such 
a high type I error as when sampling by variable area 
plots. The performance of Rao Scott’s test in terms of 
type I error, reported in the mentioned works, is better 
than the one recorded in the simulations carried out in 
this study, since in most of the experiments the authors 
obtained significance levels equal to the theoretical 
value, while in this study the estimated type I error 
was always higher than the nominal or theoretical 
level. However, only in 3 of the simulated cases 
(20%) the type I error of the Rao-Scott test surpasses 
the superior limit of Bradley’s interval. Therefore, it 
can be stated that in most situations this goodness-of-
fit test proved to be robust. The differences between 
the values of αl  obtained for the Rao-Scott test with 
correction of second order, and those reported in other 
studies, are consequences of the differences between 
the experimental conditions, the characteristics of the 
population, and the sampling designs applied.

CONCLUSIONS

 The results obtained in this research indicate that 
the validity of Pearson’s chi-squared goodness-of-fit 
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estadístico ji-cuadrado de Pearson. Igualmente, Tho-
mas y Rao (1987) reportaron niveles de significancia 
altos para la prueba ji-cuadrada de Pearson con el 
muestreo por conglomerados, y resultados bastante 
buenos para la prueba de Rao-Scott. Sin embargo, 
en ninguno de estos trabajos la prueba de bondad de 
ajuste ji-cuadrada de Pearson mostró un error tipo I 
tan alto como al muestrear por parcelas variable. El 
desempeño de la prueba de Rao-Scott en términos 
del error tipo I reportado en los trabajos menciona-
dos es mejor que el registrado en las simulaciones 
realizadas en este trabajo, ya que en la mayoría de 
los experimentos los autores obtuvieron niveles de 
significancia iguales al valor teórico, mientras que en 
el presente estudio el error tipo I estimado siempre 
fue mayor al nivel nominal o teórico. No obstante, 
sólo en 3 (20%) de los casos simulados el error tipo 
I de la prueba de Rao-Scott supera el límite superior 
del intervalo de Bradley. Por tanto, puede decirse 
que en la mayoría de las situaciones esta prueba de 
bondad de ajuste se mostró robusta. Las discrepan-
cias entre los valores de αl  obtenidos para la prueba 
de Rao-Scott con corrección de segundo orden  y los 
reportados en otras investigaciones son consecuencia 
de las diferencias entre las condiciones experimenta-
les, las características de la población y los diseños 
muestrales aplicados.

CONCLUSIONES

 Los resultados obtenidos en esta investigación in-
dican que la validez de la prueba de bondad de ajuste 
ji-cuadrada de Pearson es influenciada por la violación 
de los supuestos de independencia e igual distribución 
de las observaciones que ocurre en el muestreo con 
parcelas de área variable. Lo mismo sucede cuando 
se utiliza el muestreo con parcelas de área fija. La 
violación del supuesto de independencia hace que la 
prueba ji-cuadrada de Pearson tenga un error tipo I 
diferente del valor nominal establecido. La magnitud 
de la distorsión del error tipo I de estas pruebas varía 
de un muestreo a otro, siendo mayor cuando se usan 
parcelas de tamaño variable. 
 Los niveles de significación altos para la prueba 
de bondad de ajuste ji-cuadrada de Pearson cuando se 
aplican en muestras obtenidas con parcelas fijas y par-
celas variables puede conducir a conclusiones erróneas 
acerca de la población en estudio, razón por la cual 
no se recomienda su uso. Es conveniente aplicar una 
prueba de bondad de ajuste que corrija las violaciones 
de los supuestos de independencia e igual probabilidad 
de inclusión para todos los individuos. Una de estas 
pruebas es la de Rao-Scott con corrección de segun-
do orden, que en esta investigación registró valores 

test is affected by the violation of the assumptions of 
independence and equal distribution of observations, 
which occurs in sampling with variable area plots. 
The same happens when sampling with fixed area 
plots is used. Violation of independence assumption 
causes Pearson’s Chi-square test to have a type I 
error, different from the established nominal value. 
The magnitude of the distortion of the type I error 
of these tests varies from one sampling to another, 
the greatest occurring when plots of variable size are 
used.
 The high significance levels for Pearson’s chi-
square goodness-of-fit test, when applied in samples 
obtained with fixed and variable plots, may lead to 
erroneous conclusions about the population under 
study, reason why their use is not recommended. It 
is convenient to apply a goodness-of-fit test that may 
correct the violations of assumptions of independence 
and equal inclusion probability for all the individuals. 
One of these tests is that of Rao-Scott with second 
order correction, which in this research registered 
values of the type I error lower than those of Pearson’s 
chi-square test and in many cases  rather close to the 
nominal value.
 The results of this study show the importance of 
considering the complexity of sample design, used 
when data of a complex sample are analyzed.

—End of the English version—
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del error tipo I menores que la prueba ji-cuadrada de 
Pearson y en muchos casos bastante cercanos al valor 
nominal.
 Los resultados de este trabajo muestran la impor-
tancia de considerar la complejidad del diseño mues-
tral utilizado cuando se analizan datos de una muestra 
compleja.  
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