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RESUMEN

En investigaciones relacionadas con dosis de fertilización 
de cultivos, es frecuente la aplicación de un modelo 
pseudocuadrático como una aproximación de una 
superficie de respuesta. Sin embargo, la determinación 
del rendimiento óptimo analítico o económico, puede 
presentar dificultades, particularmente cuando los 
óptimos generados corresponden a valores que están 
fuera del intervalo de exploración, se obtiene un punto 
silla o cuando no es posible llegar a una solución 
analítica de las ecuaciones. La obtención del óptimo 
económico en un modelo pseudocuadrático, requiere la 
aplicación de métodos de cálculo numérico y el acceso 
a un sistema de cómputo estadístico. Los objetivos del 
presente trabajo fueron: presentar un procedimiento 
para el cálculo de los óptimos analíticos o económicos 
en un modelo pseudocuadrático general con uno y 
dos factores. El modelo se desarrolló en la Unidad 
Académica Multidisciplinaria Agronomía y Ciencias 
de la Universidad Autónoma de Tamaulipas durante 
2006 y se aplicó en datos experimentales obtenidos de 
estudios de fertilización en maíz de temporal efectuados 
en dos localidades del estado de Puebla, México. Para 
un factor de estudio, el rendimiento óptimo económico 
determinado fue 4 569.45 kg ha-1 de maíz con una dosis 

de 138.95 kg ha-1 de nitrógeno. Para dos factores, el 
rendimiento óptimo (2 295.20 kg ha-1) se observó en las 
dosis de 110 kg ha-1 de nitrógeno y 0 kg ha-1 de fósforo. 

Palabras clave: económico, óptimo analítico y modelo 
pseudocuadrático.

ABSTRACT

In research on crop fertilization it is frequent the application 
of pseudocuadratic models as a response surface approach.  
However, the determination of analytic and economic 
optimum yields may present difficulties, particularly when 
the corresponding values lie out of the exploration range, 
when a saddle point is obtained or when is impossible to 
reach an analytic solution for the equation. To obtain the 
economic optimums in a pseudocuadratic model, the use 
of numerical calculation methods and a statistic computer 
system, is required. The objectives of this work were: 
to present a procedure for calculating the analytical and 
economic optimum yields on a pseudocuadratic general 
model with one and two factors and to test it with real 
experimental data. The model was developed at the Unidad 
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Académica Multidisciplinaria Agronomía y Ciencias de 
la Universidad Autónoma de Tamaulipas, in 2006 and 
was applied on experimental data obtained from maize 
fertilization trials carried out under rainfed conditions at 
two sites in the state of Puebla, Mexico. For one factor, the 
optimal economic yield (4 569.45 kg ha-1) was obtained with 
138.95 kg ha-1 of nitrogen. For two factors, the optimal yield 
was 2 295.20 kg ha-1 with 110 kg ha-1 of nitrogen and 0 kg 
ha-1 of phosphorous.

Key words :  analytic and economic optimum, 
pseudocuadratic model.

INTRODUCCIÓN

A través del tiempo los polinomios de orden bajo 
(menor o igual a 3) son los que más se han utilizado 
para estimar la superficie de respuesta (González et 
al., 2000; Colmenares et al., 2002; Hernández et al., 
2006), debido principalmente a su fácil interpretación 
y cálculo de los estimadores. Con el desarrollo 
tecnológico y científico, en los últimos años se ha 
desarrollado equipos y programas de cómputo con 
capacidad para realizar cálculos de mayor magnitud, 
precisión y rapidez, lo cual permite ajustar modelos más 
complejos. Con base en lo anterior, es posible proponer 
modelos alternativos con mayor ajuste a la superficie 
de respuesta y expliquen la relación entre las variables 
de estudio utilizadas en experimentación agrícola. Los 
modelos pseudocuadráticos representan una alternativa 
y comprenden al modelo raíz cuadrada que se ha 
utilizado ampliamente en experimentos relacionados 
con dosis de fertilización.

Los modelos pseudocuadráticos han sido objeto de 
estudio en trabajos orientados a determinar algunas 
características del ajuste de la superficie, como 
eficiencia de estimación de los coeficientes de 
regresión y varianza, así como sesgo de la respuesta 
estimada (Díaz et al., 1991; Castillo et al., 1996; 
Briones y Martínez, 2002). En general, el propósito 
de la estimación de una superficie de respuesta es 
obtener los niveles de los factores que optimicen la 
respuesta en las variables de interés. En ocasiones, la 
dificultad que se presenta en el caso de los modelos 
pseudocuadráticos es el procedimiento de cálculo 
para determinar los puntos extremos o la estimación 
de los coeficientes de regresión. 

Los objetivos del presente trabajo fueron: presentar un 
procedimiento para el cálculo de los óptimos analíticos 
o económicos en un modelo pseudocuadrático general con 
uno y dos factores y aplicar el procedimiento generado a 
los datos obtenidos en dos experimentos de fertilización 
en maíz bajo condiciones de temporal.

La metodología de superficies de respuesta involucra en 
sus propósitos, determinar un modelo que aproxime una 
relación funcional desconocida η=f(ξ1,ξ2,...,ξp), esto es, 
entre una variable respuesta η, y p variables explicativas 
ξ1, ξ2,..., ξp. En esta investigación se asumió que η se puede 
aproximar en alguna región de interés por medio de un 
modelo pseudocuadrático en términos de p variables x1,x2,...
xp, las cuales son funciones lineales simples de las variables 
explicativas:

  
                                                                                                                    (1)

donde, las β's son los parámetros a estimar, xij es el nivel 
del factor j para la observación i, yi es la respuesta de la 
observación i experimental de η, y εi es el error de ajuste 
del modelo, correspondiente a la observación i, con 
E((εi)=0, E(εi

 2)=σ2, E((εi εj)=0 si i≠j, y aj y ak están en el 
intervalo (0,1). Cuando en el modelo (Ecuación 1) aj y ak 
son diferentes de uno, se obtiene la superficie de respuesta 
pseudocuadrática (Briones y Martínez, 2002). En esta 
investigación se implementó y se aplicó un procedimiento 
para determinar los óptimos analíticos y económicos de la 
respuesta estimada para cada uno de los dos casos, p= 1 y 
p= 2, uno y dos factores.

Los cálculos se realizaron con el paquete Mathematica 
(1999), que contiene un programa computacional que 
manipula operaciones matemáticas en forma simbólica y el 
paquete SAS (1998). El procedimiento para identificar los 
puntos óptimos analíticos u óptimos económicos cuando 
se ajusta un modelo como la Ecuación 1, comprende el uso 
del criterio de optimización de la segunda derivada (Bers 
y Karal, 1985).

Para un factor:

1) se identifica el modelo pseudocuadrático:
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con mayor ajuste a la variable respuesta (yi) en función 
del factor o variable independiente (xi). Este modelo 
pseudocuadrático es no lineal en a. Para determinar el 
mejor ajuste se requiere de un equipo de cómputo con un 
programa específico para ajustar este tipo de modelos, como 
el procedimiento NLIN de SAS (SAS, 1998), que permite 
ajustar modelos no lineales.

Para determinar el mejor ajuste de ese modelo; primero, 
se calcula el estimador del exponente a, para lo cual se 
puede utilizar el procedimiento NLIN de SAS mediante el 
programa siguiente:

DATA MAIZ;
INPUT x y;
CARDS;
DATOS
PROC NLIN METHOD=GAUSS;
PARAMETERS           =-8201.59,       =2129.57       =-88.75 a=0.5;

MODEL y=       +       *x**a +        *x**(2*a);

DER.       =1;

DER.      =x**a;

DER.     =x**(2*a);

DER.a=     *x**a*LOG(x) +2*      *x**(2*a)*LOG(x);

RUN;

La opción METHOD comprende los métodos: GAUSS, 
MARQUARDT y DUD; los dos primeros requieren del 
comando DER, el cual implica que se deben de incluir las 
derivadas de los parámetros involucrados en el modelo 
(            ,                                        y  a   parámetros, para el modelo en consideración). 
El método DUD no requiere de dichas derivadas. 

El comando PARAMETERS requiere que se especifiquen 
los valores iniciales de cada parámetro del modelo por 
ajustar. Un criterio que se puede aplicar en experimentos 
con fertilizantes, es asignar el valor de 0.5 al parámetro a 
y estimar los parámetros lineales por medio de regresión 
lineal y los estimadores obtenidos usarlos como valores 
iniciales; la propuesta anterior se justifica, debido a que 
se han realizado trabajos con fertilizantes en los que el 
modelo pseudocuadrático con valores de a´s igual a 0.5 
son los mejores; resultados similares que se observaron 
en este trabajo.

2) una vez obtenido el mejor ajuste, calcule:

Al evaluar f´´(x) se obtiene como resultado uno de los 
siguientes casos:

a) que el valor obtenido sea mayor que cero, entonces se 
tiene un mínimo relativo en x0;
b) que el valor obtenido sea menor que cero, entonces se 
tiene un máximo relativo en x0;
c) que el valor obtenido sea igual a cero, entonces no se 
puede concluir. En este caso y cuando ocurra que el valor 
de x0 esté fuera del intervalo de exploración, se debe 
encontrar la mejor respuesta en la región de exploración.
El procedimiento anterior conduce a la determinación del 
óptimo analítico. Para determinar el óptimo económico 
se debe resolver la ecuación:
    

                                                                                             
                                                                                                       

(2)

donde, Px y Py son: el costo por unidad del factor x 
aplicado y el precio de venta por unidad del producto y 
respectivamente (Colmenares et al., 2002). La solución 
para x en la Ecuación 2, en general, se dificulta por 
métodos algebraicos ordinarios, por lo que se puede 
emplear un proceso iterativo como es el método de 
Newton-Rampson para lo cual se requiere un sistema 
de cómputo que contenga este procedimiento. Con el 
paquete Mathematica es relativamente fácil encontrar la 
solución para x, mediante la siguiente instrucción: 
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                                                                                                                    (3)

El procedimiento de Newton-Rampson requiere de 
valores iniciales de x; ya que en general, los óptimos 
analítico y económico están cercanos. Se pueden dar 
como valores iniciales de x, los valores determinados en 
el óptimo analítico.

En caso de que el valor de x obtenido con la instrucción dada 
en Ecuación 3, no se encuentre en el intervalo de exploración, 
aplicar el paso 3 c.

Para dos factores:

1) identifique el modelo pseudocuadrático:

que mejor ajuste la variable respuesta (yi) en función de los 
factores o variables independientes (x1 y x2). El ajuste se 
puede obtener con el procedimiento NLIN de SAS en forma 
similar al caso de un factor.

2) calcule los óptimos analíticos obtenidos de la primera 
derivada:
		

3) obtenga el Hessiano o matriz de segundas derivadas (Bers 
y Karal, 1985):

y defina D=f11(x01,x02)f22(x01,x02)-f
2
2 1 (x01,x02). Entonces, sí:

a) D<0, yi tiene un punto silla en (x01,x02)
b) D>0 y f11(x01,x02)<0, yi tiene un punto máximo relativo 
en (x01,x02)

c) D>0 y f11(x01,x02)>0, yi tiene un punto mínimo relativo 
en (x01,x02)

En el caso a), y cuando el punto (x01,x02) esté fuera del 
intervalo de exploración, se debe determinar la mejor 
respuesta en la región de exploración. 

Igual que en el caso de un factor, los pasos anteriores 
conducen a la determinación de un óptimo analítico. El 
cálculo del óptimo económico implica resolver el siguiente 
sistema de ecuaciones:

donde, Px 1
, Px 2

y Py son, respectivamente, el costo por 
unidad de los factores x1 y x2 aplicados y el precio de venta 
del producto y. También, como en el caso de un factor, la 
solución al sistema de ecuaciones anterior requiere de un 
proceso iterativo, como el del método de Newton-Rampson. 
Con el paquete Mathematica se resuelve mediante la 
siguiente instrucción: 

Para dirigir la búsqueda en la solución al sistema anterior, 
como se comentó para el caso de un factor, conviene asignar 
como valores iniciales a x1 y x2, los valores determinados en 
el óptimo analítico.

Cuando para un factor resulte 3c) o para dos factores se 
obtenga un punto silla, o los valores de x1 o x2 se ubiquen 
fuera de la región de exploración, ya sea con, uno o dos 
factores, el procedimiento a seguir consiste en aplicar un 
método numérico para determinar la mayor respuesta en la 
región de exploración de los factores en estudio. El método 
consiste en tomar una rejilla de puntos en la región de 
exploración y evaluar cada punto en el modelo ajustado 
hasta encontrar la mayor respuesta. El procedimiento 
puede efectuarse mediante de una hoja de cálculo o un 
paquete estadístico.
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El programa en SAS de un método numérico es el siguiente 
(se utilizó el mejor modelo encontrado para dos factores).

data extremo;
DO N=107 TO 110 BY 0.1;
DO P=0 TO 1 BY 0.1;
Y=-2626.49+916.81*(N**0.5)-48.86*(P**0.9)
-44.78*N+0.14*(P**1.8)+ 4.75*(N**0.5)*(P**0.9);
OUTPUT; END; END;
PROC SORT; BY DESCENDING R;
DATA respuesta; SET UNO; IF _N_ LE 50;
PROC PRINT;
RUN;

El programa debe ser aplicado varias veces para determinar 
los valores de los factores que generan la mayor respuesta. 
Primero, se toman los valores de los factores en toda la 
región de exploración y posteriormente se explora en la 
región donde se infiere que puede estar la mayor respuesta 
mediante incrementos menores en los factores cada vez que 
se corra el programa.

Para ilustrar los métodos descritos, se utilizaron datos 
proporcionados por el Colegio de Postgraduados, 

2) en este caso se tiene el punto: 

sobre investigaciones con dosis de fertilizantes en maíz 
de temporal efectuados en el estado de Puebla. Los 
trabajos comprendieron el estudio de los factores: 
nitrógeno, fósforo y densidad de población en un diseño 
de tratamientos Plan Puebla I.

El estudio comprendió el ajuste del mejor modelo 
pseudocuadrático para uno y dos factores. 

Para un factor, el mejor modelo pseudocuadrático ajustado 
fue con a= 0.5 obtenido con los datos de un experimento 
en maíz realizado bajo condiciones de temporal en 
Quetzalapa, Ciudad Serdán, Puebla, en el cual se 
estudiaron los efectos de nitrógeno (N), fósforo (P), y 
densidad de población (DP), donde los efectos de F y DP 
no fueron significativos (p>0.05).

1) el modelo ajustado fue:      =-8201.59 + 2129.57 N0.5 - 88.75 
N; R2=0.844 y CV=8.85%

donde;    = rendimiento estimado (kg ha-1), y N= nitrógeno 
aplicado (kg ha-1). Los datos observados y el modelo ajustado 
se presentan en la Figura 1.

3) al evaluar la segunda derivada en x0: 

f´´(x)=(a-1)a      xa-2+2a(2a-1)      x2a-2, se tiene f(143.94)=
-0.5(0.5)(2129.57)(143.940.5-2)+2(0.5)(2(0.5)-1)(-88.75)
(143.942(0.5)-2=-0.31
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Figura 1.   Rendimiento de maíz de temporal a diferentes  dosis de nitrógeno y el modelo ajustado. Quetzalapa,                                                                                                                                      
                         Ciudad Serdán, Puebla, 2006.
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Esto implica que para N=143.94 kg ha-1 de Nitrógeno se 
obtiene el rendimiento máximo de maíz, 

     = -8201.59 + 2129.57(143.940.5)-88.75(143.94)=4573.26 
kg ha-1. 

Lo anterior no implica que sea la mejor opción, pues la mejor 
sería el óptimo económico. Éste se obtiene al resolver para 
N la ecuación:

a      Na-1 +2a       N
2a-1=       , sustituyendo valores y se tiene:

0.5(2129.57) N0.5-1+2(0.5)(-88.75)N2(0.5)-1=

Al despejar N se encuentra el valor de 138.95 kg ha-1 de N 
lo cual implica que con esta dosis se obtiene el rendimiento 
óptimo económico. Al sustituir este valor en el modelo dado 
en (Ecuación 1), se obtiene el rendimiento óptimo económico 
de 4 569.45 kg ha-1 de maíz.

Para dos factores, se tiene:

 El mejor modelo pseudocuadrático ajustado fue para a1= 0.5 
y a2= 0.9, obtenido con los datos de un experimento realizado 
en San José Guerrero, Ciudad Serdán, Puebla, en el cual se 
probaron diferentes dosis de nitrógeno, fósforo y densidad 
de población; ésta última no mostró efecto significativo (α 
> 0.05). El modelo fue:

   = -2626.49+916.81N0.5-48.86P0.9 4.66N+0.14P1.8+4.75N0.5P0.9; 
R2= 0.91, CV=6.8%

Calcule:

Obtenga:

=0.5(0.5-1)(916.81)(105.273)0.5-2+2(0.5)(2(0.5)-1)(-44.78)(105.2737)0.5-2
 

+0.5(0.5-1)(4.75) 17(105.273)0.5-2(0.4036)0.9=-0.2117

= 0 . 9 ( 0 . 9 - 1 ) ( - 4 8 . 8 6 ) ( 0 . 4 0 3 6 ) 0 . 9 - 2 + 0 . 9 ( 0 . 9 - 1 ) ( 4 . 7 5 )
(105.2687)0.5(0.4036)0.9-2 +2(0.9)(2(0.9)-1) (0.14)(0.4036)2(0.9)-2=0.2719

Como el valor de D es negativo, se infiere que en el punto 
(105.273, 0.4036) el modelo ajustado tiene un punto silla. 
En estos casos se debe aplicar un método de exploración 
numérico, como el que se específica en Materiales y Métodos 
hasta determinar los niveles de los factores en la región de 
exploración que producen el mayor rendimiento.

El mayor rendimiento determinado con el programa en SAS, 
fue para 110 kg ha-1 de nitrógeno y 0 kg ha-1 de fósforo, con 
rendimiento de   = 2 295.2 kg ha-1 de maíz. Colmenares et 
al. (2003) ajustaron un modelo pseudocuadrático con a1= 
0.7 y a2= 0.9, ambos fijos, a datos de un estudio sobre dosis 
de nitrógeno y cantidad de semilla sobre el rendimiento 
maíz y encontraron la dosis óptima económica de nitrógeno 
de 118.97 kg ha-1; con los mismos datos pero ajustando un 
polinomio de segundo grado, estos autores encontraron 
una dosis de nitrógeno mayor a 120 kg ha-1, lo cual refleja la 
influencia del modelo propuesto.
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conclusiones

El modelo pseudocuadrático permite obtener una solución 
única para los óptimos analíticos de una superficie de 
respuesta, con valores de los exponentes en (0,1). 
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La utilidad práctica del modelo aplicado para un factor 
mostró que en Quetzalapa, Puebla, la aplicación de 138.95 kg 
ha-1 de nitrógeno produce un rendimiento óptimo económico 
de 4 569.45 kg ha-1 de maíz. Para dos factores en San José 
Guerrero, Puebla, se determinó que sólo el nitrógeno tuvo 
efecto en el rendimiento de maíz y que la aplicación de 110 
kg ha-1 produce el mayor rendimiento de 2 295.2 kg ha-1.

LITERATURA CITADA

Bears, L. y Karal, F. 1985. Cálculo. 2a Edición, traducción 
del inglés; Agut, A. V. 2a Edición. Interamericana. 
México. 746 p.

Briones, E. F. y Martínez G., A. 2002. Eficiencia de algunos 
diseños experimentales en la estimación de una 
superficie de respuesta. Agrociencia 36:201-
210.

Castillo, V. M.; Martínez, G. A.; Castillo, M. A. y Santizo, 
R. J. A. 1996. Comparación de diseños a estimar 
superficies de respuesta. Agrociencia 30:75-81.

Colmenares, C. B.; Martínez, G. A; Martínez, D. A. y 
Ramírez, G. M. E. 2002. Una región confidencial 
para óptimos económicos.  Agrociencia 
36:337:344.

Colmenares, C. B.; Martínez, G. A; Martínez, D. A.; 
Ramírez, G. M. E. y González, C. F. 2003. 
Región confidencial para óptimos económicos 
en modelos pseudocuadráticos. Agrociencia 
37:177-185. 

Díaz, G. J. A.; Martínez, G. A.; González, C. F.; Castillo, 
M. A. y Santizo, R. J. A. 1991. La eficiencia de 
los diseños de tratamientos empleados en la 
investigación agrícola, considerando el ajuste 
de modelos pseudocuadráticos. Agrociencia 
3:27-47.

González, E. D. R.; Alcalde, B. S.; Ortiz, C. J. y Castillo, 
M. A. 2000.  Dinámica de la acumulación 
de potasio por trigo cultivado en diferentes 
ambientes. Agrociencia 34:1-11.

Hernández, S. J.; Cuca, G. M.; Pró, M. A; González, A. 
M. y Becerril, P. C. 2006. Nivel óptimo biológico 
y económico de calcio en gallinas leghorn blancas de 
segundo ciclo de postura. Agrociencia 40:49-57.

Mathematica. 1999. Users´s Guide; release 4.01 
Edition. Wolfram Research Inc. Champaign, 
IL. USA. 1470 p.

Statistical Analysis System (SAS). 1998. SAS/STAT 
Users´s Guide; release 6.03 Edition. SAS Institute, 
Cary, N. C. USA. 1028 p.


